實質條件- 維基百科,自由的百科全書
文章推薦指數: 80 %
在命題演算,或在數學的邏輯演算中,實質條件、實質蘊涵(容易和語意蘊涵 ⊨ {\displaystyle \vDash } {\displaystyle \vDash } 搞混,建議不要用蘊涵這兩字)或蘊涵算子 ...
實質條件
維基百科,自由的百科全書
跳至導覽
跳至搜尋
此條目的主題是邏輯運算符。
關於邏輯門,請見「蘊含閘」。
文氏圖
A
→
B
{\displaystyleA\rightarrowB}
在命題演算,或在數學的邏輯演算中,實質條件、實質蘊涵(容易和語意蘊涵
⊨
{\displaystyle\vDash}
搞混,建議不要用蘊涵這兩字)或蘊涵算子是一種二元的真值泛函的邏輯運算符,它有著如下形式:
若A,則B。
這裡的A和B是陳述變量(可以被語言中任何有意義的可表示的句子所替代)。
在這種形式的陳述中,第一項這裡的A,叫做前件;第二項這裡的B,叫做後件。
這個算子使用右箭頭「→」(有時用符號「⇒」或「⊃」)來符號化,其語義僅爲「如果A為真,那麼B亦為真」。
它的常見寫法見下:
A
→
B
{\displaystyleA\toB}
A
⊃
B
{\displaystyleA\supsetB}
A
⇒
B
{\displaystyleA\RightarrowB}
須注意的是,
⇒
{\displaystyle\Rightarrow}
更常用於語意蘊含(等同符號
⊨
{\displaystyle\vDash}
)。
這也是大多數初學者易搞混的點。
目次
1真值表
2形式性質
3對自然語言的符號表示
4同其他條件陳述的比較
5引用
6外部連結
真值表[編輯]
涉及實質蘊涵的真值表定義如下:
A
{\displaystyle~A}
B
{\displaystyle~B}
A
→
B
{\displaystyle~A\rightarrow~B}
(符合了「如果A為真,那麼B必為真」)
F
F
T
F
T
T
T
F
F
T
T
T
由此可見,
A
→
B
{\displaystyleA\toB}
等價於
¬
A
∨
B
{\displaystyle\negA\lorB}
。
形式性質[編輯]
實質條件不要混淆於蘊涵關係
⊨
{\displaystyle\models}
。
但在多數邏輯包括經典邏輯中二者之間有密切關聯。
例如下列原理成立:
如果
Γ
⊨
ψ
{\displaystyle\Gamma\models\psi}
則
∅
⊨
ϕ
1
∧
⋯
∧
ϕ
n
→
ψ
{\displaystyle\emptyset\models\phi_{1}\land\dots\land\phi_{n}\rightarrow\psi}
對於某些
ϕ
1
,
…
,
ϕ
n
∈
Γ
{\displaystyle\phi_{1},\dots,\phi_{n}\in\Gamma}
。
(這是演繹定理的特定形式。
)
上述的逆命題
→
{\displaystyle\rightarrow}
和
⊨
{\displaystyle\models}
而二者都是單調的;就是說如果
Γ
⊨
ψ
{\displaystyle\Gamma\models\psi}
則
Δ
∪
Γ
⊨
ψ
{\displaystyle\Delta\cup\Gamma\models\psi}
,並且如果
ϕ
→
ψ
{\displaystyle\phi\rightarrow\psi}
則
(
ϕ
∧
α
)
→
ψ
{\displaystyle(\phi\land\alpha)\rightarrow\psi}
對於任何α,Δ。
(用結構規則的術語說,這叫做弱化。
)
但是這些原理不在所有邏輯中成立。
它們顯著的不成立於非單調邏輯中,也不成立於相干邏輯中。
實質蘊涵的其他性質:
左分配律:
A
→
(
B
→
C
)
→
(
(
A
→
B
)
→
(
A
→
C
)
)
{\displaystyleA\rightarrow(B\rightarrowC)\rightarrow((A\rightarrowB)\rightarrow(A\rightarrowC))}
傳遞律:(
A
→
B
)
→
(
(
B
→
C
)
→
(
A
→
C
)
)
{\displaystyleA\rightarrowB)\rightarrow((B\rightarrowC)\rightarrow(A\rightarrowC))}
冪等律:
A
→
A
{\displaystyleA\rightarrowA}
真理保持:在其下所有變量被指派為真值『真』的釋義生成真值『真』作為實質蘊涵的結果。
前交換律:(
A
→
(
B
→
C
)
)
≡
(
B
→
(
A
→
C
)
)
{\displaystyleA\rightarrow(B\rightarrowC))\equiv(B\rightarrow(A\rightarrowC))}
注意
A
→
(
B
→
C
)
{\displaystyleA\rightarrow(B\rightarrowC)}
邏輯等價於
(
A
∧
B
)
→
C
{\displaystyle(A\landB)\rightarrowC}
;這個性質有時叫做柯里化。
由於這些性質,對→符號採用右結合約定是合適的。
對自然語言的符號表示[編輯]
在介紹邏輯的課本中經常包括的常見的練習是符號表示。
這些練習給學生自然語言的一個句子或一段文本,學生必須把它們轉換成符號語言。
這是通過識別普通語言的等價的邏輯術語而完成的,這通常包括實質條件、析取、合取、否定和(經常的)雙條件。
更高級的邏輯書籍和介紹性讀物的後續章節經常增加等號、存在量詞和全稱量詞。
用來識別實質條件的、在普通語言中的一些短語包括,「如果/當」、「僅當」、「假定」、「假如」、「假設」、「蘊涵」、「即使」和「萬一」。
很多這些短語指示前件,另一些指示後件。
正確識別「蘊涵方向」是重要的。
比如,「A僅當B」被如下陳述捕獲
A→B
而「A當B」被如下陳述正確捕獲
B→A
蘊涵算符的中文意思包括「那麼」「則」「是因為」「如果……就……」。
中文
數學表達式
如果天下雨,我就帶傘
天下雨→我帶傘
學生只有喜歡數學,才會學好物理學生物理學得好是因為他喜歡數學
物理學得好→喜歡數學
如果老婆說對,我就要聽
老婆說對→我就聽
同其他條件陳述的比較[編輯]
使用這個算子是邏輯學家規定的,作為結果,它產生了一些有爭議的真值推理陳述句。
比如前件明顯為假設的,任何實質條件的整句陳述結果都是真值成立的。
所以陳述句如「假設
2
{\displaystyle2}
是奇數,則蘊涵了
2
{\displaystyle2}
是偶數」這樣違反自然語言直覺的推理蘊涵是真的。
類似的,後件為真的任何實質條件陳述都是真的。
所以陳述「如果豬接管了農場並謀殺了農民,則巴黎是在法國」是真的。
這些有爭議的真值推理陳述句出現,是因為自然口語的人經常易受誘惑,而把實質條件和直陳條件或其他條件陳述如反事實條件,混淆在一起了。
通過不把條件陳述讀做「如果」和「則/那麼」可以減輕這種誘惑。
最常見的方式是把A→B讀做「要麼不是情況
A
{\displaystyleA}
要麼是情況
B
{\displaystyleB}
(或二者)」,或更簡單的「要麼
A
{\displaystyleA}
為假要麼
B
{\displaystyleB}
為真(或二者)」。
(當
A
{\displaystyleA}
為假,此式即已被淺薄的(trivial)滿足。
這種陳述等價的自然口語方式,即是使用否定和析取(或)的邏輯符號
¬
A
∨
B
{\displaystyle\negA\veeB}
而獲得的。
)
引用[編輯]
Brown,FrankMarkham(2003),BooleanReasoning:TheLogicofBooleanEquations,1stedition,KluwerAcademicPublishers,Norwell,MA.2ndedition,DoverPublications,Mineola,NY,2003.
Edgington,Dorothy(2001),"Conditionals",inLouGoble(ed.),TheBlackwellGuidetoPhilosophicalLogic,Blackwell.
Edgington,Dorothy(2006),"Conditionals",inEdwardN.Zalta(ed.),TheStanfordEncyclopediaofPhilosophy,Eprint(頁面存檔備份,存於網際網路檔案館).
Quine,W.V.(1982),MethodsofLogic,(1sted.1950),(2nded.1959),(3rded.1972),4thedition,HarvardUniversityPress,Cambridge,MA.
Stalnaker,Robert.'IndicativeConditionals'.Philosophia5(1975):269–286.
外部連結[編輯]
陳力恆:〈如言、選言發微〉
陳力恆:〈關聯詞之邏輯關聯(頁面存檔備份,存於網際網路檔案館)〉
閱論編邏輯聯結詞
恆真(
⊤
{\displaystyle\top}
)
與非(
↑
{\displaystyle\uparrow}
)
反蘊涵(
←
{\displaystyle\leftarrow}
)
蘊涵(
→
{\displaystyle\rightarrow}
)
或(
∨
{\displaystyle\lor}
)
非(
¬
{\displaystyle\neg}
)
異或(
⊕
{\displaystyle\oplus}
)
雙條件(
↔
{\displaystyle\leftrightarrow}
)
命題
或非(
↓
{\displaystyle\downarrow}
)
非蘊涵(
↛
{\displaystyle\nrightarrow}
)
反非蘊涵(
↚
{\displaystyle\nleftarrow}
)
與(
∧
{\displaystyle\land}
)
恆假(
⊥
{\displaystyle\bot}
)
取自「https://zh.wikipedia.org/w/index.php?title=实质条件&oldid=67594217」
分類:邏輯聯結詞數理邏輯二元運算隱藏分類:使用過時的math標籤格式的頁面
導覽選單
個人工具
沒有登入討論貢獻建立帳號登入
命名空間
條目討論
臺灣正體
不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體
查看
閱讀編輯檢視歷史
更多
搜尋
導航
首頁分類索引特色內容新聞動態近期變更隨機條目資助維基百科
說明
說明維基社群方針與指引互助客棧知識問答字詞轉換IRC即時聊天聯絡我們關於維基百科
工具
連結至此的頁面相關變更上傳檔案特殊頁面靜態連結頁面資訊引用此頁面維基數據項目
列印/匯出
下載為PDF可列印版
其他專案
維基共享資源
其他語言
አማርኛالعربيةБеларускаяБеларуская(тарашкевіца)БългарскиCatalàČeštinaDeutschEnglishEsperantoEspañolEestiفارسیSuomiFrançaisעבריתHrvatskiMagyarՀայերենItaliano日本語QaraqalpaqshaҚазақшаМакедонскиNederlandsNorskbokmålPolskiPiemontèisPortuguêsRomânăРусскийSimpleEnglishSlovenčinaSvenskaไทยУкраїнська
編輯連結
延伸文章資訊
- 1专利实质条件研究专利性- 博士论文详情
专利实质条件研究专利性 · 【导师】 郑成思 · 【作者基本信息】 中国社会科学院研究生院,民商法学,2001,博士 · 【文献来源】 中国社会科学院研究生院 · 【发表时间】 2001-04-...
- 2質料條件句的悖論 - 紫煙亭
質料條件句(material conditional)是古典邏輯(classical logic)系統底下其中一種複合句, ... 把實質條件句當成日常條件句,會有不少荒謬的例子。
- 3實質條件 | 蘋果健康咬一口
雙條件句真值表- 在命題演算,或在數學的邏輯演算中,實質條件、實質蘊涵(容易和語意蘊涵⊨-displaystyle-vDash}-displaystyle-vDash}搞混,建議不要用蘊涵這兩字...
- 4实质条件 - NiNa.Az
实质条件语言监视编辑重定向自此條目介紹的是邏輯運算符關於邏輯門請見蘊含閘在命题演算或在数学的逻辑演算中實質蘊涵容易和語意蘊涵displaystyle ...
- 5实质条件in Chinese (T)
在命题演算,或在数学的逻辑演算中,实质条件或蕴涵算子是一种二元的真值泛函的逻辑运算符,它有着如下形式. 如果a 那么c,. 这里的a 和c 是陈述变量(可以被语言中任何 ...