Steps, Solved Example of Frobenius Method - Byju's
文章推薦指數: 80 %
The Frobenius method is an approach to identify an infinite series solution to a second-order ordinary differential equation. Generally, the Frobenius ... CheckoutJEEMAINS2022QuestionPaperAnalysis: CheckoutJEEMAINS2022QuestionPaperAnalysis: × DownloadNow Previous Next FrobeniusMethod TheFrobeniusmethodisanapproachtoidentifyaninfiniteseriessolutiontoasecond-orderordinarydifferentialequation.Generally,theFrobeniusmethoddeterminestwoindependentsolutionsprovidedthatanintegerdoesnotdividetheindicialequation’sroots. Considerthesecond-orderordinarydifferentialequationgivenbelow: Here,a(x),b(x),andc(x)are“suitablefunctions”. Letusassumethatthesearethesuitablerationalfunctionsthatmeanspolynomialsdividedbypolynomials,suchasinBessel’sequationoforder1/2. (d2y/dx2)+(1/x)(dy/dx)+[1–(1/4x2)]y=0 Forthisequation,wecanillustratetheFrobeniusmethod.TheprimaryapproachofFrobeniusaimsatsolutionsintheformofpowerseriesaroundsomegivenpointx0multipliedby(x−x0)toacertainpower.Thiscanbeexpressedas: Here,akandraretheconstantsthatcanbeidentifiedthroughtheFrobeniusmethod. Learn:OrdinaryDifferentialEquations Let’sstartwiththeFrobeniusmethodtosolvethesecond-orderordinarydifferentialequation. Step1:Chooseasuitablevalueforx0.Thiscanbedoneintwoways: (i)Ifconditionsaregivenfory(x)atsomepoint,wecanusethatforx0. (ii)Ifnoconditionsaregivenfory(x),wemustchoosex0asperourconvenience.Generally,weprefertochoosex0=0. Step2:Ifthegivendifferentialequationisoftheforma(x)(d2y/dx2)+b(x)(dy/dx)+c(x)y=0,thenconvertthis,asmentionedabove. i.e.,(d2y/dx2)+(1/x)(dy/dx)+[1–(1/4x2)]y=0………(1) Thenmultiplytheequationby4x2sothatwecanavoidfractionstomakethesimplificationeasy. 4x2(d2y/dx2)+4x(dy/dx)+(4x2–1)y=0 (or) 4x2y′′+4xy′+(4x2–1)y=0……..(2) Step3:Letusassumethatthesolutionisoftheform\(\begin{array}{l}y=y(x)=(x-x_0)^r\sum_{k=0}^{\infty}a_k(x-x_0)^k\end{array}\),whereakisanarbitraryconstantsuchthatak≠0. Step3:Now,bringthefactor(x–x0)rinsidethesummation.Thatmeans, \(\begin{array}{l}y=y(x)=\sum_{k=0}^{\infty}a_k(x-x_0)^{k+r}\end{array}\) Step4:Fromtheassumedseriesofy,weneedtocalculatetherespectivemodifiedpowerseriesfory′andy′′bydifferentiating“term-by-term”. Forthissubstitutex0=0.Thus,weget; \(\begin{array}{l}y=y(x)=\sum_{k=0}^{\infty}a_k\x^{k+r}\end{array}\) Then,bydifferentiatingy,weget; Step5:Substitutetheexpressionsfory,y′andy′′inequation(2).Onsimplificationofthisweget; Step6:Foreachseriesobtainedintheaboveequation,weneedtochangetheindexsothateachserieswillbeoftheform: \(\begin{array}{l}\sum_{n=something}^{\infty}[Term\not\containing\x](x-x_0)^n\end{array}\) Step7:Convertthesumofseriesintheobtainedequationintoonebigseries.Afewtermswilllikelyhavetobewrittenseparately,soweneedtosimplifytoapossibleextent. Step8:Now,thefirsttermoftheobtainedseriesmaybeoftheform; a0[formulaofr](x–x0)something Also,rememberthateachtermoftheseriesis0. Fromthis,wecanwritetheformulaofr=0 Thisyieldsaquadraticequationinr. Solvingthisequation,wegettworoots,r1andr2. Step9:Bysubstitutingr1inthelastseriesequation,weget; Fromthis,wecanget; nthformulaofak’s=0forn0≤n Then,solvethisforhighestindex=formulaofnandlowerindexedak’s Tosimplifythetermsatleastalittle,performthechangeofindicessothattherecursionformulawillbederivedandcanberewrittenas; ak=formulaofkandlower-indexedcoefficients Step10:Usingtherecursionformulaoranycorrespondingformulastothelower-orderterms,weneedtofindalltheak’sintermsofa0and,maybe,oneotheram. Step11:Usingr=r1andtheformulas,wehavederivedthecoefficients.Now,writeouttheresultantseriesfory.Simplifyitandfactoroutthearbitraryconstant(s)ifpossible. Step12:Repeatsteps9to11forsubstitutingr=r2. Finally,thelaststepmayyieldyasanarbitrarylinearcombinationoftwodistinctseries.Therefore,thisisreferredtoasthegeneralsolutiontothegivendifferentialequation. Thiscanbefurthersimplifiedas: Readmore: Series Infiniteseriesformula Infiniteseriescalculator FrobeniusMethodSolvedExample Example: Findthesolutionof4xy′′+2y′+y=0byFrobeniusMethod. Solution: Givendifferentialequationis: 4xy′′+2y′+y=0….(1) Let\(\begin{array}{l}y=y(x)=\sum_{k=0}^{\infty}a_k\x^{k+r}\end{array}\)bethesolutionequation. So, Substitutingtheexpressionsofy,y′andy′′inequation(1),weget; \(\begin{array}{l}4x\left[\sum_{k=0}^{\infty}a_k(k+r)(k+r-1)x^{k+r-2}\right]+2\left[\sum_{k=0}^{\infty}a_k(k+r)x^{k+r-1}\right]+\sum_{k=0}^{\infty}a_kx^{k+r}=0\end{array}\) Thiscanbewrittenas: \(\begin{array}{l}\left[\sum_{k=0}^{\infty}a_k4(k+r)(k+r-1)x^{k+r-1}\right]+\left[\sum_{k=0}^{\infty}a_k2(k+r)x^{k+r-1}\right]+\sum_{k=0}^{\infty}a_kx^{k+r}=0\end{array}\)…..(2) Dividingtheaboveequationbyxr-1,weget; \(\begin{array}{l}\left[\sum_{k=0}^{\infty}a_k4(k+r)(k+r-1)x^{k}\right]+\left[\sum_{k=0}^{\infty}a_k2(k+r)x^{k}\right]+\sum_{k=0}^{\infty}a_kx^{k+1}=0\end{array}\) Changingtheindicesofthebases,weget; \(\begin{array}{l}https://latex.codecogs.com/svg.image?\left[\sum_{n=0}^{\infty}a_n4(n+r)(n+r-1)x^{n}\right]+\left[\sum_{n=0}^{\infty}a_n2(n+r)x^{n}\right]+\sum_{n=1}^{\infty}a_{n-1}x^{n}=0\end{array}\) Now,weneedtoexpandthesummationtomaketheindicesequal.Thiscanbedoneasfollows. \(\begin{array}{l}a_04(0+r)(0+r-1)x^0+\left[\sum_{n=1}^{\infty}a_n4(n+r)(n+r-1)x^{n}\right]+a_02(0+r)x^0\left[\sum_{n=1}^{\infty}a_n2(n+r)x^{n}\right]+\sum_{n=1}^{\infty}a_{n-1}x^{n}=0\end{array}\) Nowconsiderthetermwhichisoftheforma0[termofr]=0. i.e.,a0[4r(r–1)+2r]=0 4r2–4r+2r=0 4r2–2r=0 r2–(½)r=0 r[r–(½)]=0 Thus,r=½,r=0. Now,bychangingtheindicesofequation(2),weget; Fork≥0,weget; 4(k+r+1)(k+r)ak+1+2(k+r+1)ak+1+ak=0 Fromthis,wecanwriteak+1as: ak+1=-ak/[(2k+2r+2)(2k+2r+1)];k=0,1,2,3,etc.,………..(3) Substituter=r1=½inequ(3). ak+1=-ak/[(2k+3)(2k+2)] Substitutingk=0,1,2,3,andsoon,intheaboveequation,weget; a1=-a0/3.2=-a0/3! a2=-a1/5.4=a0/5! a3=-a2/7.6=-a0/7! Asweknow,a0isanarbitraryconstant.So,leta0=1. Therefore,ak(r1)=(-1)k/(2k+1)!;k=0,1,2,3,…. Hence, Similarly,bysubstitutingr=r2=0inequ(3),weget; Thus,weobtainedthesolutionsofthegivendifferentialequation. PracticeProblems Solvexy′′+2y′+xy=0byFrobeniusMethod. Solve:5x2y′′+x(1+x)y′−y=0 Considerthedifferentialequationxy”+y’+2xy=0.ObtainthesolutionbyFrobeniusmethod. MATHSRelatedLinks IntroductionToExponents BisectionMethod DifferentialEquationsWorksheets ProbabilityForClass12 TrigonometricEquations Is101APrimeNumber? InverseSine TableOf25 Is1APrimeNumber? MultiplicationOfFractions LeaveaCommentCancelreplyYourMobilenumberandEmailidwillnotbepublished.Requiredfieldsaremarked* * SendOTP DidnotreceiveOTP? RequestOTPon VoiceCall * * Website * Grade/Exam Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam * * PostComment CBSESamplePapers CBSESamplePapersClass8Maths CBSESamplePapersClass9Maths CBSESamplePapersClass10Maths CBSESamplePapersClass11Maths CBSESamplePapersClass12Maths CBSEPreviousYearQuestionPapers CBSEPreviousYearQuestionPapersClass12Maths CBSEPreviousYearQuestionPapersClass10Maths ICSESamplePapers ICSESamplePapersClass8Maths ICSESamplePapersClass9Maths ICSESamplePapersClass10Maths ISCSamplePapersClass11Maths ISCSamplePapersClass12Maths ICSEPreviousYearQuestionPapers ICSEPreviousYearQuestionPapersClass10 ISCPreviousYearQuestionPapersClass12Maths CBSESamplePapers CBSESamplePapersClass8Maths CBSESamplePapersClass9Maths CBSESamplePapersClass10Maths CBSESamplePapersClass11Maths CBSESamplePapersClass12Maths CBSEPreviousYearQuestionPapers CBSEPreviousYearQuestionPapersClass12Maths CBSEPreviousYearQuestionPapersClass10Maths ICSESamplePapers ICSESamplePapersClass8Maths ICSESamplePapersClass9Maths ICSESamplePapersClass10Maths ISCSamplePapersClass11Maths ISCSamplePapersClass12Maths ICSEPreviousYearQuestionPapers ICSEPreviousYearQuestionPapersClass10 ISCPreviousYearQuestionPapersClass12Maths JoinBYJU'SLearningProgram Grade/Exam Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam GATE Submit × RegisterNow Share Share Share CallUs RegisterwithBYJU'S&DownloadFreePDFs * SendOTP * * * * * Grade Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 IAS CAT BankExam DownloadNow FREE Signup DOWNLOAD AppNOW
延伸文章資訊
- 1Frobenius Method -- from Wolfram MathWorld
If x_0 is an ordinary point of the ordinary differential equation, expand y in a Taylor series ab...
- 2Frobenius Method
Frobenius Method. Dec. 4, 2005. 1)規則奇異點/不規則奇異點之定義 ... 2)Frobenius'Theorem. 假設奇異點 ... 皆為解析(可以一powe...
- 39: Series Solutions of ODEs (Frobenius' Method)
The Frobenius method is a method to identify an infinite series solution for a second-order ordin...
- 4CHAPTER 5 SERIES SOLUTIONS - 1 Power Series Method
If b(x), c(x) not analytic at x=0 ⇒ irregular singular point, a non-trivial solution may or may n...
- 5提要118:Frobenius 解法簡介
首先介紹Frobenius 解法,這也是一個定理,主要是用來解析微分方程式用 ... 當r = 0 時,表Frobenius 解法可以冪級數解法(Power Series Method)取代。