R Handbook: Repeated Measures ANOVA
文章推薦指數: 80 %
Repeated Measures ANOVA ... When an experimental design takes measurements on the same experimental unit over time, the analysis of the data must take into ... SummaryandAnalysisofExtensionProgramEvaluationinR SalvatoreS.Mangiafico SearchRcompanion.org Contents Introduction PurposeofthisBook AuthorofthisBookandVersionNotes UsingR StatisticsTextbooksandOtherResources PrivacyPolicyforAdvertisements StatisticsforEducationalProgramEvaluation WhyStatistics? EvaluationToolsandSurveys Variables,DescriptiveStatistics,andPlots TypesofVariables DescriptiveStatistics ConfidenceIntervals BasicPlots UnderstandingStatisticsandHypothesisTesting HypothesisTestingandp-values ReportingResultsofDataandAnalyses ChoosingaStatisticalTest IndependentandPairedValues LikertData IntroductiontoLikertData DescriptiveStatisticsforLikertData DescriptiveStatisticswiththelikertPackage ConfidenceIntervalsforMedians ConvertingNumericDatatoCategories TraditionalNonparametricTests IntroductiontoTraditionalNonparametricTests One-sampleWilcoxonSigned-rankTest SignTestforOne-sampleData Two-sampleMann–WhitneyUTest Mood’sMedianTestforTwo-sampleData Two-samplePairedSigned-rankTest SignTestforTwo-samplePairedData Kruskal–WallisTest Mood’sMedianTest FriedmanTest QuadeTest Scheirer–Ray–HareTest AlignedRanksTransformationANOVA NonparametricRegression NonparametricRegressionforTimeSeries PermutationTests IntroductiontoPermutationTests One-wayPermutationTestofIndependenceforOrdinalData One-wayPermutationTestofSymmetryforOrdinalData PermutationTestsforMediansandPercentiles TestsforOrdinalDatainTables AssociationTestsforOrdinalTables MeasuresofAssociationforOrdinalTables ConceptsforLinearModels IntroductiontoLinearModels UsingRandomEffectsinModels WhatareEstimatedMarginalMeans? EstimatedMarginalMeansforMultipleComparisons FactorialANOVA:MainEffects,InteractionEffects,andInteractionPlots p-valuesandR-squareValuesforModels AccuracyandErrorsforModels OrdinalTestswithCumulativeLinkModels IntroductiontoCumulativeLinkModels(CLM)forOrdinalData Two-sampleOrdinalTestwithCLM Two-samplePairedOrdinalTestwithCLMM One-wayOrdinalRegressionwithCLM One-wayRepeatedOrdinalRegressionwithCLMM Two-wayOrdinalRegressionwithCLM Two-wayRepeatedOrdinalRegressionwithCLMM TestsforNominalData IntroductiontoTestsforNominalVariables ConfidenceIntervalsforProportions Goodness-of-FitTestsforNominalVariables AssociationTestsforNominalVariables MeasuresofAssociationforNominalVariables TestsforPairedNominalData Cochran–Mantel–HaenszelTestfor3-DimensionalTables Cochran’sQTestforPairedNominalData ModelsforNominalData ParametricTests IntroductiontoParametricTests One-samplet-test Two-samplet-test Pairedt-test One-wayANOVA One-wayANOVAwithBlocks One-wayANOVAwithRandomBlocks Two-wayANOVA RepeatedMeasuresANOVA CorrelationandLinearRegression AdvancedParametricMethods TransformingData NormalScoresTransformation AnalysisofCountDataandPercentageData RegressionforCountData BetaRegressionforPercentandProportionData OtherBooks AnRCompanionfortheHandbookofBiologicalStatistics Advertisement RepeatedMeasuresANOVA Advertisement Whenanexperimentaldesigntakesmeasurementsonthesame experimentalunitovertime,theanalysisofthedatamusttakeintoaccount theprobabilitythatmeasurementsforagivenexperimentalunitwillbe correlatedinsomeway. Forexample,ifweweremeasuringcalorieintakefor students,wewouldexpectthatifonestudenthadahigherintakeatTime1, thatthatstudentwouldhaveahigherintakeothersatTime2,andsoon. Inpreviouschapters,ourapproachtodealwith non-independentobservationswastotreatStudentasablockingvariable orasarandom(blocking)variable. Theapproachinthischapteristoincludean autocorrelationstructureinthemodelusingthenmlepackage. Packagesusedinthischapter Thepackagesusedinthischapterinclude: • psych • nlme • car • multcompView • lsmeans • ggplot2 • rcompanion Thefollowingcommandswillinstallthesepackagesifthey arenotalreadyinstalled: if(!require(psych)){install.packages("psych")} if(!require(nlme)){install.packages("nlme")} if(!require(car)){install.packages("car")} if(!require(multcompView)){install.packages("multcompView")} if(!require(lsmeans)){install.packages("lsmeans")} if(!require(ggplot2)){install.packages("ggplot2")} if(!require(rcompanion)){install.packages("rcompanion")} RepeatedmeasuresANOVAexample Inthisexample,studentswereaskedtodocumenttheirdaily caloricintakeonceamonthforsixmonths. Studentsweredividedintothree groupswitheachreceivinginstructioninnutritioneducationusingoneof threecurricula. Therearedifferentwayswemightapproachthisproblem. If wesimplywantedtoseeifonecurriculumwasbetteratdecreasingcaloric intakeinstudents,wemightdoasimpleanalysisofvarianceonthedifference betweeneachstudent’sfinalandinitialintake. Intheapproachherewewillusearepeatedmeasures analysiswithallthemeasurements,treatingStudentasarandom variabletotakeintoaccountnativedifferencesamongstudents,andincluding anautocorrelationstructure. Input=(" Instruction Student Month Calories.per.day 'CurriculumA' a 1 2000 'CurriculumA' a 2 1978 'CurriculumA' a 3 1962 'CurriculumA' a 4 1873 'CurriculumA' a 5 1782 'CurriculumA' a 6 1737 'CurriculumA' b 1 1900 'CurriculumA' b 2 1826 'CurriculumA' b 3 1782 'CurriculumA' b 4 1718 'CurriculumA' b 5 1639 'CurriculumA' b 6 1644 'CurriculumA' c 1 2100 'CurriculumA' c 2 2067 'CurriculumA' c 3 2065 'CurriculumA' c 4 2015 'CurriculumA' c 5 1994 'CurriculumA' c 6 1919 'CurriculumA' d 1 2000 'CurriculumA' d 2 1981 'CurriculumA' d 3 1987 'CurriculumA' d 4 2016 'CurriculumA' d 5 2010 'CurriculumA' d 6 1946 'CurriculumB' e 1 2100 'CurriculumB' e 2 2004 'CurriculumB' e 3 2027 'CurriculumB' e 4 2109 'CurriculumB' e 5 2197 'CurriculumB' e 6 2294 'CurriculumB' f 1 2000 'CurriculumB' f 2 2011 'CurriculumB' f 3 2089 'CurriculumB' f 4 2124 'CurriculumB' f 5 2199 'CurriculumB' f 6 2234 'CurriculumB' g 1 2000 'CurriculumB' g 2 2074 'CurriculumB' g 3 2141 'CurriculumB' g 4 2199 'CurriculumB' g 5 2265 'CurriculumB' g 6 2254 'CurriculumB' h 1 2000 'CurriculumB' h 2 1970 'CurriculumB' h 3 1951 'CurriculumB' h 4 1981 'CurriculumB' h 5 1987 'CurriculumB' h 6 1969 'CurriculumC' i 1 1950 'CurriculumC' i 2 2007 'CurriculumC' i 3 1978 'CurriculumC' i 4 1965 'CurriculumC' i 5 1984 'CurriculumC' i 6 2020 'CurriculumC' j 1 2000 'CurriculumC' j 2 2029 'CurriculumC' j 3 2033 'CurriculumC' j 4 2050 'CurriculumC' j 5 2001 'CurriculumC' j 6 1988 'CurriculumC' k 1 2000 'CurriculumC' k 2 1976 'CurriculumC' k 3 2025 'CurriculumC' k 4 2047 'CurriculumC' k 5 2033 'CurriculumC' k 6 1984 'CurriculumC' l 1 2000 'CurriculumC' l 2 2020 'CurriculumC' l 3 2009 'CurriculumC' l 4 2017 'CurriculumC' l 5 1989 'CurriculumC' l 6 2020 ") Data=read.table(textConnection(Input),header=TRUE) ### Orderfactorsbytheorderindataframe ### Otherwise,Rwillalphabetizethem Data$Instruction=factor(Data$Instruction, levels=unique(Data$Instruction)) ### Checkthedataframe library(psych) headTail(Data) str(Data) summary(Data) ###Removeunnecessaryobjects rm(Input) Definemodelandconductanalysisofdeviance Thisexamplewilluseamixedeffectsmodeltodescribethe repeatedmeasuresanalysis,usingthelmefunctioninthenlme package. Studentistreatedasarandomvariableinthemodel. Theautocorrelationstructureisdescribedwiththecorrelation statement. Inthiscase,corAR1isusedtoindicateatemporalautocorrelation structureoforderone,oftenabbreviatedasAR(1). Thisstatementtakesthe form: correlation=Structure(form =~time|subjvar) where: • Structureistheautocorrelationstructure. Options arelistedinlibrary(nlme);?corClasses • timeisthevariableindicatingtime. Inthiscase,Month. ForthecorAR1structure,thetimevariablemustbeanintegervariable. • subjvarindicatesthevariableforexperimental units,inthiscaseStudent. Autocorrelationismodeledwithinlevels ofthesubjvar,andnotbetweenthem. ForthecorAR1structure,avalueforthefirstorder correlationcanbespecified. Inthiscase,thevalueof0.429isfoundusing theACFfunctioninthe“Optionalanalysis:determiningautocorrelation inresiduals”sectionbelow. Autocorrelationstructurescanbechosenbyeitheroftwo methods. Thefirstistochooseastructurebasedontheoreticalexpectations ofhowthedatashouldbecorrelated. Thesecondistotryvarious autocorrelationstructuresandcomparetheresultingmodelswithacriterion likeAIC,AICc,orBICtochoosethestructurethatbestmodelsthedata. Optionaltechnicalnote: Inthiscase,itisn’tnecessarytouseamixedeffects model. Thatis,it’snotnecessarytoincludeStudentasarandom variable. Asimilaranalysiscouldbeconductedbyusingthegls functioninthenlmepackage,andincludingthecorrelation option,butexcludingtherandomoption,asfollowsinblack. library(nlme) model=gls(Calories.per.day~Instruction+Month+Instruction*Month, correlation=corAR1(form=~Month|Student, value=0.8990), data=Data, method="REML") library(car) Anova(model) Codeforanalysis library(nlme) model=lme(Calories.per.day~Instruction+Month+Instruction*Month, random=~1|Student, correlation=corAR1(form=~Month|Student, value=0.4287), data=Data, method="REML") library(car) Anova(model) AnalysisofDevianceTable(TypeIItests) Response:Calories.per.day ChisqDfPr(>Chisq) Instruction 10.4221 2 0.005456** Month 0.0198 1 0.888045 Instruction:Month38.6045 2 4.141e-09*** Testtherandomeffectsinthemodel Therandomeffectsinthemodelcanbetestedbycomparing themodeltoamodelfittedwithjustthefixedeffectsandexcludingthe randomeffects. Becausetherearenotrandomeffectsinthissecondmodel,the glsfunctioninthenlmepackageisusedtofitthismodel. model.fixed=gls(Calories.per.day~Instruction+Month+Instruction*Month, data=Data, method="REML") anova(model, model.fixed) Modeldf AIC BIC logLik TestL.Ratiop-value model 1 9716.9693736.6762-349.4847 model.fixed 2 7813.6213828.9489-399.81061vs2100.652 <.0001 p-valueandpseudor-squaredformodel thenagelkerkefunctioncanbeusedtocalculateap-value andpseudor-squaredvalueforthemodel. oneapproachistodefinethenullmodelasonewithno fixedeffectsexceptforanintercept sideofthe library model.null="lme(Calories.per.day~1," nagelkerke mcfadden coxandsnell anotherapproachtodeterminingthep-valueand pseudor-squaredforanlmemodelistocomparethemodeltoa nullmodelwithonlyaninterceptandneitherthefixednortherandomeffects. toaccomplishthis function. model.null.2="gls(Calories.per.day~1," post-hocanalysis thelsmeanspackageisabletohandlelme objects. meanseparationtestsandleastsquaremeans leastsquaremeans comparisons theone-wayanovachapter. becausemonthisanintegervariable variable only. marginal="lsmeans(model," cld lettersfor.group instruction confidencelevelused:0.95 conf-leveladjustment:sidakmethodfor3estimates pvalueadjustment:tukeymethodforcomparingafamilyof3estimates significancelevelused:alpha="0.05.05" interactionplot forthisplot functiontocalculatethenaturalmeanofeachinstructionxmonth combination percentilemethod. sum="groupwiseMean(Calories.per.day~Instruction+Month, data =Data," pd="position_dodge(.2)" ggplot histogramofresiduals residualsfromamixedmodelfitwithnlmeshouldbe normallydistributed. homoscedasticityandindependence x="residuals(model)" plotnormalhistogram plot optionalanalysis:determiningautocorrelationin residuals theacffunctioninthenlmepackagewill indicatetheautocorrelationforlagsinthetimevariable. glsmodel foranlmemodel equallyspacedintervals. model.a="gls(Calories.per.day~Instruction+Month+Instruction*Month," acf model.b="lme(Calories.per.day~Instruction+Month+Instruction*Month," optionaldiscussiononspecifyingformulaefor repeatedmeasuresanalysis specifyingrandomeffectsinmodels thegeneralschemaforspecifyingrandomeffectsinris: formula.for.random.effects sothat intercept interceptanditsownslopeforrep willhaveitsownintercept indicatingtimeandsubjectvariables asimplerepeatedanalysisstatementinprocmixedin sascouldbespecifiedwith: repeateddate asimilarspecificationinwiththeglsfunctioninnlme packageinrwouldbe: correlation="corAR1(form=~date|id)" likewise inprocmixedinsascouldbespecifiedwith: randomid asimilarspecificationinwiththelmefunctioninnlme random="~1|id," specifyingnestedeffects inrepeatedmeasuresanalysis effects. insas: treatment isequivalentto blockblock inr: block cooperativeextension non-commercialreproductionofthiscontent attribution isprohibited. ifyouusethecodeorinformationinthissitein apublishedwork mycontactinformationisonthe abouttheauthorof thisbookpage. thissiteusesadvertisingfrommedia.net.formoreinformation ourprivacypolicypage. proceedsfrom theseadsgotosupporteducationandresearchactivities includingtheimprovementofthissite. citation mangiafico programevaluationinr rcompanion.org>
延伸文章資訊
- 1One-way Repeated Measure ANOVA - RPubs
Introduction. The repeated measures ANOVA makes the following assumptions about the data: No sign...
- 2Repeated Measures ANOVA in R: The Ultimate Guide
- 3Repeated Measures of ANOVA in R Complete Tutorial
The two-way repeated measures ANOVA can be performed in order to determine whether there is a sig...
- 4One way repeated measures ANOVA in R - Data Analysis in R
To perform repeated measures anova in R, we identify subject as within subject variable and treat...
- 5One-way repeated measures ANOVA (RB-p design)
One-way repeated measures ANOVA (RB-p design). TODO; Install required packages; Traditional univa...