洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面 ...

文章推薦指數: 80 %
投票人數:10人

平面製程的電晶體讓基極、射極和集極都在同一個平面上,並且都受到二 ... 骨骼遭受外力衝擊時可以透過局部的塑性形變來分散能量,使裂痕不易蔓延。

000文字分享友善列印繁|简000好書推薦好書搶先看專欄文明足跡本月選書活得科學洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面製程」——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》親子天下・2022/07/17・5127字・閱讀時間約10分鐘+追蹤一場淋浴的時間,革命性想法突然浮現1959年1月初,赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來,他似乎看到了一線曙光,可以解決令大家束手無策的困境!赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來。

圖/Sandsun根據貝爾實驗室的技術手冊,當矽晶圓完成摻雜後,必須用溶劑把表面剩餘的氧化層全部清除乾淨。

因為擴散法應該也會把雜質摻入氧化層裡,若沒有全部移除,被汙染的氧化層恐怕會影響電晶體的導電性。

不過如此就會讓p-n接面裸露在外,所以才必須用金屬外殼加以密封。

赫爾尼當時就懷疑氧化層是否真的會被汙染,就算會,真的會影響電晶體嗎?他覺得氧化層有隔絕保護作用,保留下來或許利大於弊,但貝爾實驗室與同事都說照著技術手冊做就對了。

後來要忙著趕IBM的訂單,他就把這想法擱在一旁,未再深入研究,現在他才突然想到如果有氧化層擋著,掉落的金屬碎屑就接觸不到p-n接面,也就不會影響電晶體了。

赫爾尼進辦公室後,連忙翻出當初所寫的筆記,重新整理謄寫。

而在塗塗寫寫的過程中,腦中又冒出一個革命性的想法。

高臺式電晶體是先用擴散法在集極表面摻雜成基極,再用光刻技術在基極中央蝕刻出窗口,摻雜成射極。

但何不一開始就用光刻技術做出基極?這樣底層的集極就不會全部被基極蓋住,集極、基極與射極三者都在同一平面,它們之間的p-n接面用同一層二氧化矽保護,只露出接腳的接觸點。

由於電極彼此更靠近,效能會更好,而在製造上也更加簡單。

諾貝爾獎級的專利:平面製程赫爾尼興奮的向諾宜斯與摩爾等人提出這個「平面製程(Planarprocess)」的構想,大家都半信半疑,違背技術手冊的指示,保留氧化層真的不會有問題嗎?不過目前也沒別的辦法,況且真的成功的話,不僅能解決眼下的問題,還能大幅提升電晶體效能與生產效率,讓快捷半導體的競爭力更上一層樓。

他們決定放手一搏,同時趕緊找專利律師申請專利。

赫爾尼的平面製程概念(左圖)與高臺式電晶體(右圖)比較。

平面製程的電晶體讓基極、射極和集極都在同一個平面上,並且都受到二氧化矽保護。

圖/親子天下「你們希望這項專利涵蓋哪些範圍?」專利律師開頭就先問這個問題。

諾宜斯等人頓時都愣住了,不就電晶體嗎?律師才進一步解釋:「這平面製程不是一種製造方法嗎?除了電晶體,也可以用來製造其他半導體元件吧?」摩爾見諾宜斯還在出神中,只好出聲回答:「當然可以。

要的話,二極體、電阻、電容這些也都可以用平面製程,但意義不大,這些也不是我們的目標市場。

」「為什麼?」「因為這些元件構造簡單,沒必要用平面製程,純粹看生產規模,規模越大,成本越低。

這是德州儀器、雷神這些大公司的優勢,我們只能攻電晶體,以技術取勝。

」律師點點頭:「那就只針對電晶體申請專利保護囉?」「等一下!」神遊中的諾宜斯突然插進來,卻又思索了一下才說:「還是把其他半導體元件都納進來好了。

別誤會,我沒有要做這些東西,只是剛剛想到——如果用平面製程把它們都放在同一片晶圓上呢?」大家不解的望著諾宜斯,只見他站起來走向黑板,一邊問大家:「你們想想,IBM拿到我們的電晶體之後,再來呢?」接著諾宜斯在黑板畫起一個一個小方塊,說:「他們得把電晶體、二極體、電阻、電容這些元件一個個銲接到電路板上。

我估計全部至少有幾百顆,甚至上千顆吧,每顆都要接上金屬電路,還得有銲接的空間,結果元件本身所占的空間其實不到一半。

」黑板上的圖就像幅地圖,上面坐落著一棟棟平房,空地與道路占了大片土地。

電路板上的各種電子元件就像地圖上的房子,有大半的面積被空地與道路佔據,房子(電子元件)只占一小部分。

圖/Pixabay「不只如此。

」諾宜斯再用紅色粉筆在小方塊中間畫個小圈圈,說:「每個元件真正有用的只有這裡,其餘只是外殼包裝。

你們看,如果只有這些小圈圈,讓它們彼此緊鄰在一起,空間就只有原來電路板的5%不到吧。

」大家似乎開始明白諾宜斯要說什麼,但貝仍疑惑的問道:「我可能沒你們懂,但怎麼可能沒有外殼,還緊鄰在一起?它們得有保護,彼此也得分開才不會漏電,不是嗎?」赫爾尼微笑著替諾宜斯回答:「二氧化矽可以提供保護,也能用來區隔元件。

我只想到多做一次光刻技術,但既然能做兩次,當然三次、四次、……要幾次都可以,就能把各種元件都做在一起。

」摩爾接著說:「而且蝕刻出的缺口不僅用於摻雜,也可以蝕刻出複雜的溝槽作為電路。

既然每個元件的接觸點都在同一平面,便可以像印刷電路板那樣,直接把銅線印在溝槽上,原來在電路板上的電路就都整合在一個晶片裡了。

諾宜斯,這真是絕妙的點子!」「這得感謝赫爾尼先想出平面製程。

不過這只是個概念,具體上要怎麼做,摩爾,我們倆再一起研究。

」貝興奮的說:「這只要做出來,再貴我都賣得出去!我告訴你們,空軍的人一直在問我能不能做得更小呢。

因為除了轟炸機,還有導彈、火箭也都要裝上電腦,它們的空間更小,電腦越小越好,到時候這些訂單非我們莫屬。

」被捷足先登的專利申請的確如貝所說,美國政府正在傾全力推動太空計劃,並加強國防科技。

因為蘇聯在1957年10月4日,毫無預警的發射第一顆人造衛星史普尼克一號(Sputnik1),嚇了美國一大跳,發現原來蘇聯的太空科技竟然遙遙領先。

萬一蘇聯將太空科技用於戰爭,勢必會取得空中優勢,甚至危及美國本土。

蘇聯第一顆人造衛星史普尼克一號(Sputnik1)1:1等比模型。

圖/wikimedia因此,美國政府除了要軍方強化飛機、飛彈與各項國防武器的性能,同時在1958年10月成立「國家航空暨太空總署(NASA)」,整合資源與各界人才,以求在這場太空競賽超越蘇聯。

軍方與NASA都有龐大預算,為了盡速達成任務,都願意採用最新技術,花起錢來也毫不手軟,對快捷半導體而言正是大好時機。

專利律師先針對平面製程申請專利,積體電路則還要等諾宜斯寫出具體方法,才能提出專利申請。

不料,諾宜斯和摩爾尚在研究,3月時竟然被捷足先登,德州儀器召開記者會,發表史上第一顆積體電路!原來德州儀器的工程師基爾比(JackKilby)去年6月就提出積體電路的構想,然後在9月以手工做出一個晶片雛形,只有電晶體、電阻和電容三個元件,電路另外用金線銲接而成,雖然粗糙簡單,但確實能正常運作。

如果德州儀器祭出專利保護,快捷半導體就無法開發積體電路這極具潛力的產品,嚴重影響公司的未來。

辭職風暴屋漏偏逢連夜雨,在公司前途未卜之際,總經理鮑德溫竟然要辭職。

諾宜斯等人錯愕又憤怒,要他當面說清楚。

貝先開口責問他:「鮑德溫,現在公司遇到問題,你身為主帥不面對處理,反而要先落跑,未免太現實了吧?」「我如果真的現實,去年IBM訂單問題搞不定時老早就走了。

人總是有更高的目標要追求,就這麼簡單。

」羅伯特忍不住嗆他:「更高?你已經是總經理,權力、薪水與分紅都比我們幾個創辦人高,還有什麼不滿意?」鮑德溫平靜的回答:「我很感謝你們的禮遇,但總經理也只是受聘的經理人,再怎樣也和你們幾位大股東沒辦法比。

」諾宜斯真摯的說:「你如果嫌認股權太少,可以提出來啊。

」鮑德溫嘆了一口氣說:「那就說開了吧。

有家國防承包商願意出資,讓我成立公司製造電晶體,一些工程師也會跟我走。

」公司前途未卜之際,總經理鮑德溫選擇辭職離開。

(示意圖)圖/stokkete「什麼,你也太沒道義了!」「了不起,主帥帶兵投靠敵營。

」「你這叛徒!」「你膽敢偷走技術,就等著被告!」憤怒的斥責馬上此起彼落。

「你們有什麼資格說我?你們幾個不也是背叛蕭克利自立門戶?」鮑德溫馬上惱羞成怒,展開反擊:「我不過帶走十幾個人,你們對原公司造成的傷害才大吧。

論道義,你們更沒道義!我本想大家好聚好散的,現在也沒什麼好說了。

祝你們好運,再見。

」說完即頭也不回的走出門外。

會議室裡一片沉寂,大家不約而同想到當年從蕭克利半導體實驗室集體請辭的情景:平時易怒暴躁的蕭克利竟然一句話都沒說,鐵青著臉直接走出辦公室。

反倒是貝克曼跑來找他們曉以大義,發現無法挽回後,隨即變臉威脅要控告他們侵權洩密。

沒想到如今換他們嚐到這滋味了。

諾宜斯先打破沉默:「我們來討論總經理人選吧。

你們有沒有想到誰還不錯的?」克雷納舉起手說:「我覺得不要再從外面找了,找來難保又跟鮑德溫一樣。

就諾宜斯你來當吧,這一年多來,你應該也學到不少經營面的大小事了。

」大家紛紛附議贊同,這次諾宜斯也不再謙讓,決定扛下這重責大任,研發副總一職便交給摩爾。

摩爾趁此時報告積體電路的應對策略:「我們和專利律師討論過了,德州儀器雖然先申請積體電路的專利,但他們的電路仍得用銲接的,而諾宜斯結合了平面製程與印刷電路,這兩項技術都不在他們的設計裡,應該可以認定為新發明。

所以我們決定還是申請專利,無論如何,總比棄械投降來得好。

」基爾比與諾宜斯兩人的積體電路設計對比。

左圖是基爾比的設計,可以明顯看出電子元件上都有額外拉出的電線。

而右圖是諾宜斯的設計就簡潔許多,電線和電子元件都是平整的放置在一個平面上。

圖/親子天下「沒錯,不用管別人,我們就照原先計劃往前走。

等送出專利申請、做出樣品後,我們也要舉辦盛大的積體電路發表會,讓所有人知道誰的技術管用。

」諾宜斯馬上展現了總經理的氣勢。

積體電路的專利申請於1959年7月送出,未待審核結果出爐,本身是發明家的費爾柴爾德就以實際行動展現對他們的信心與支持,提前於10月執行選擇權,依當初合約所載,用三百萬買下全部股權。

八叛徒當初每人拿出500元,如今兩年不到就換回25萬元,當然是美夢成真,也讓外界人人稱羨。

不過,卻有兩個人看在眼裡頗不是滋味,那就是蕭克利與貝克曼。

將希望壓在四層二極體的蕭克利諾宜斯等人出走時,蕭克利仍不認為自己有錯,他得到的教訓反而是認為國內這些心高氣傲的年輕人不聽話又沒忠誠度,不如從歐洲招募三、四十歲的博士,他們更加成熟穩定,好用多了。

何況八叛徒本來不懂電晶體,都是他一手教出來的,現在換另一批人,他當然也可以在短時間內就讓他們上手。

因此,無論面對貝克曼或是外界的質疑,他都信心滿滿的堅稱集體離職事件不會有任何影響,實驗室仍將正常運作。

然而,就算貝克曼也這麼認為,他對蕭克利半導體實驗室已有不同想法了。

1958年,貝克曼將它從集團的附屬機構獨立出來為「蕭克利電晶體公司」,顯然已不想再燒錢打造另一個貝爾實驗室,而是要它像一般公司那樣盈虧自負。

蕭克利終於在1959年成功開發出p-n-p-n四層二極體,卻因為品質不穩定,未能如他原先預想的用於AT&T的電話交換機;而軍方那邊也沒能賣出多少,以致公司繼續虧損。

貝克曼決定不玩了,剛好克里夫蘭一家傳統企業也想跨足半導體,而蕭克利的名聲仍有相當吸引力,便在 1960年將公司賣給他們。

蕭克利倒不在意換新東家,反正他仍然在原地繼續做原來的事,只要解決四層二極體的品質問題,還是有機會從AT&T拿到源源不絕的訂單,到時所有人——尤其是八叛徒,就會知道他才是最後的贏家。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022年7月,親子天下,未經同意請勿轉載。

 國中生的科普素養閱讀平台:《科學生》,素養強化訓練今天就展開!相關標籤:光刻技術八叛徒半導體商業單晶矽晶片歷史真空管積體電路蕭克利電晶體熱門標籤:大麻量子力學CT值女科學家後遺症快篩時間文章難易度剛好太難所有討論 0登入與大家一起討論親子天下21篇文章・ 15位粉絲+追蹤【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。

我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

RELATED相關文章洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面製程」——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》舉起時代的火炬,推動科技革命的巨輪:蕭克利與他的接面電晶體——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》「真」最佳拍檔與他們的來電發明:史上第一顆電晶體的誕生——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》「故事力」加上「科普力」,半導體素養也能很有趣——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》TRENDING熱門討論即時熱門無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗12小時前未知死,焉知生?從南美館《亞洲的地獄與幽魂》爭議看信仰的存在危機22小時前你是哪個系的寶可夢大師?科學能解!514小時前本土科普影視如何突破、創新?科技部邀6團隊談製作甘苦121小時前為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富——著色的演化生物學72022/06/28遲來的墮胎除罪:21世紀的澳大利亞新南威爾斯州62天前如何選擇「基因交友軟體」?——影集《真愛基因》的現實22022/06/29【貓心專欄】星座/血型/性格,哪一個影響了你顏色偏好?22022/06/26021文字分享友善列印021人體解析專欄生命奧祕編輯精選萬物之理醫療健康電影中的科學來自姊姊的愛:約兒力氣要多大,才能把弟弟的肋骨抱斷?linjunJR・2022/07/13・2833字・閱讀時間約5分鐘+追蹤話題新番SPYXFAMILY中的媽媽約兒,是武功高強的職業殺手。

力大無窮的她曾因為不小心抱得太用力,導致弟弟的肋骨不幸斷裂。

約兒的力量究竟要多大,才能靠抱抱折斷別人的肋骨呢?約兒的力量究竟有多大,才能靠抱抱折斷別人的肋骨呢?圖/IMDb肋骨雖然是保護軀幹內重要器官的鎧甲,但比起粗壯的大腿骨等等其實是相對容易發生骨折的區域。

除了一些激烈的競技運動可能會導致肋骨出事之外,CPR過程中不當的壓胸動作也是胸骨或肋骨骨折的肇因之一。

這樣看來,單靠人力要把肋骨折斷好像並非不可能。

除了安妮亞需要擔心這個問題之外,清楚地知道「東西什麼時候會斷掉」也是許多工程師每天會遇到的挑戰。

然而這類實驗每做一次就要毀掉一塊材料,大多時候更完全沒有做實驗的可能(例如大型建築結構,或是無辜人類的肋骨)。

接下來我們便可以用一些簡單的估計,來探討人類肋骨究竟會不會在擁抱過程中意外斷裂。

安妮亞擔心跟媽媽抱抱時,肋骨可能會斷掉的這個問題。

圖/IMDb關心安妮亞的肋骨之前,我們先了解什麼是斷裂力學一般而言,固態材料受到外力時首先會產生正比於外力大小的彈性形變,外力停止之後便能恢復原狀。

硬度(Stiffness)描述的是彈性形變和外力的正比關係,也就是「外力=硬度*形變量」。

在相同的外力之下,硬度越大的材料形變越小。

外力大到某個程度時,會造成不可恢復的塑性形變,此時材料內部的微觀結構通常已經遭到破壞;外力再大一些便會造成巨觀的斷裂。

材料在斷裂前能承受的最大應力就是其強度(Strength)。

玻璃這類硬而脆的材料硬度大但強度小,也就是說它不容易形變,但應力一大就裂開;金屬類則通常有較好的強度和較大的彈性範圍,因此彈簧通常以金屬製成。

硬度跟強度是相關但獨立的概念,下面關於斷裂的討論會著重在強度的部分。

作為複雜的有機結構,骨骼的力學性質並不如上述的如此簡單。

骨骼遭受外力衝擊時可以透過局部的塑性形變來分散能量,使裂痕不易蔓延。

也就是說,是否骨折不只和力的大小有關,也和施力的速度有關。

瞬間的重擊會讓能量來不及耗散,材料因此更容易斷裂。

用吸管插手搖杯封膜時一定要快狠準便是這個道理,如果慢慢加壓只會讓塑膠封膜凹一個洞(也就是塑性形變),那不是因為力氣不夠,而是因為施力不夠快。

用吸管插手搖杯封膜,如果慢慢加壓只會讓塑膠封膜凹一個洞。

那不是因為力氣不夠,而是因為施力不夠快。

圖/Pexels但骨骼的塑性性質實在不好估計,所以先別管那麼多。

一般在實驗室中若要測量骨骼的斷裂強度,應該就是緩慢地對材料加壓直到斷裂,這樣才能獲得完整的「彈性─塑性─斷裂」過程的資料。

我們暫且假設內心溫柔的約兒擁抱親人的動作(相較於出拳攻擊)是緩慢的,只是力氣的高峰值出奇地大,所以肋骨在經歷了充分的塑性形變後才最終斷裂。

對於這類相對緩慢的擁抱,我們便可以安心地套用現有的一些測量數據。

一般人擁抱的力量和約兒有什麼不同?骨頭的部分接下來只要交給谷歌就可以了,那擁抱的力量該有多大呢?一般人抱的動作大概不會把雙臂交疊在一起,而是分別放在對方的肋骨上。

所以我們只要考慮一隻手的力氣就好,兩隻手就只是斷掉的肋骨數量乘以二而已。

如果健身房有一台以擁抱動作為發想的訓練器材,一般人用一隻手能拉起的槓片數量應該不多,可能最多十五公斤。

約兒提到她當時抱斷了弟弟的三根肋骨,意即兩隻手的力量差不多由三根肋骨扛起,也就是一根肋骨要承擔十公斤重的力。

換成物理學家用的單位,就是差不多100牛頓。

有這樣的姐姐,尤利還能順利活下來也絕非凡人。

圖/IMDb但是知道力的大小還不夠。

直覺會認為,較薄的材料比較容易折斷,同樣的材料在斷裂前能承受的力應該跟截面積呈正比。

換句話說,真正衡量斷裂強度的是單位截面積所受的力,也就是應力(壓力)的概念。

把一根肋骨的截面簡單當成一公分見方的正方形,壓力便等於:100牛頓/1公分2=106牛頓/公尺2=1百萬帕(最右邊的百萬帕是材料力學常用的應力單位。

)不過彎曲應力不只和截面積有關,還得考慮材料受力的整體結構。

肋骨下方的胸腔相對沒有什麼支撐力,所以肋骨比較像是一根兩端固定,中間懸空的橋樑,如下圖所示。

從日常經驗可以知道,這種結構中間懸空的部分L越長,或是厚度d越薄,彎曲的越嚴重。

肋骨下方的胸腔相對沒有什麼支撐力,所以肋骨比較像是一根兩端固定,中間懸空的橋樑。

圖/作者所以剛剛的應力還要再乘上一個長度對厚度的比值,才是肋骨在結構中承受的彎曲應力。

假設肋骨大約10公分長,最後的答案就是10百萬帕。

約兒有「全力」擁抱弟弟嗎?人類骨骼的彎曲強度取決於年齡、性別、個體發展差異等等,但是普遍的值落在100到200百萬帕的範圍,一比下來差了十倍以上。

雖然我們在計算中做了很多誇張的簡化,可是過程中不太可能有估計的失誤會讓最後結果差到十倍。

因此可以放心地說,一般人的擁抱不太可能將你的肋骨折斷。

可以放心地說,一般人的擁抱不太可能將你的肋骨折斷。

圖/IMDb根據維基百科上沒有來源的資料:「第1到3根肋骨斷裂前能承受大約180KG的重量,第4根到第9根相對脆弱些」。

這和我們的粗略估計大致相符,也就是每根肋骨10公斤重的擁抱力道距離肋骨骨折大約有十倍的差距。

不過別忘了,上面講的都是一般人的情況。

約兒可不是一般人。

想要對她的怪力有些概念,我們發現第十集躲避球大戰的特訓畫面中,約兒丟出的躲避球發出了明顯的音爆,表示她的球速至少來到音速340m/s。

一般人的躲避球速最快不過120km/h,也就是33m/s左右。

考慮到手臂長度差不多,手臂力量大致和球的動能成正比,也就是和球速平方成正比。

約兒的球速大約是常人的十倍,代表她的力量是驚人的百倍以上。

由此可知,約兒對親愛的弟弟已經相當手下留情了。

參考資料MartinGrigorAbrahamyan.(2017). OnthePhysicsoftheBoneFracture.InternationalJournalofClinicalandExperimentalMedicalSciences,3(36):74-77. https://www.researchgate.net/publication/321489340_On_the_Physics_of_the_Bone_Fracture 國中生的科普素養閱讀平台:《科學生》,素養強化訓練今天就展開!相關標籤:SPYXFAMILY力學擁抱間諜家家酒骨折骨頭熱門標籤:大麻量子力學CT值女科學家後遺症快篩時間文章難易度剛好太難所有討論 0登入與大家一起討論linjunJR28篇文章・ 437位粉絲+追蹤清大理工男。

不喜歡算數學。

喜歡電影、龐克、和翻譯小說。

不知道該把科普當興趣還是專長,但總之先做再說。

RELATED相關文章無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗國殤之後:集體哀慟的調適壓力、過勞加速大腦老化——定期測驗腦年齡,守護腦部健康來自姊姊的愛:約兒力氣要多大,才能把弟弟的肋骨抱斷?TRENDING熱門討論即時熱門無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗12小時前未知死,焉知生?從南美館《亞洲的地獄與幽魂》爭議看信仰的存在危機22小時前你是哪個系的寶可夢大師?科學能解!514小時前本土科普影視如何突破、創新?科技部邀6團隊談製作甘苦121小時前為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富——著色的演化生物學72022/06/28遲來的墮胎除罪:21世紀的澳大利亞新南威爾斯州62天前如何選擇「基因交友軟體」?——影集《真愛基因》的現實22022/06/29【貓心專欄】星座/血型/性格,哪一個影響了你顏色偏好?22022/06/26100文字分享友善列印100人體解析健康養生專欄生命奧祕醫療健康無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗精緻型硬漢・2022/07/17・1673字・閱讀時間約3分鐘+追蹤截至2022年6月19日,台灣的COVID-19確診數已達三百三十多萬人,已快到達總人口數的15%。

最近許多研究及報導分別提出,即使是得過了covid-19,仍然不能像瑪利歐兄弟中吃了「無敵星星」一樣刀槍不入,還是會有二次感染的風險。

究竟,確診後到底能不能像吃了無敵星星一樣視病毒於無物呢?延伸閱讀:為什麼無敵星星會失效?確診BA.5症狀可能會更嚴重?無敵星星到底存不存在呢?圖/泛科學YOUTUBE不同的病毒株,不同的免疫效果確診後是否會再次確診,應該分成二個部分來討論:確診者是否會確診相同的病毒株?確診者是否會確診不同的病毒株?以台灣目前盛行的Omicron變異株為例,確診過Omicron後康復的人是否會再次被Omicron變異株所感染?或是未來是否會再被其他新的變異株所感染?根據Nature期刊在2022年5月所發表的最新研究顯示1,研究者收集了感染不同變異株(包含WA1、Delta和Omicron)七天後的老鼠血清,觀察這些血清中的抗體對於不同的病毒株是否有中和能力(Neutralization),研究結果顯示感染這三種病毒株的老鼠血清對各自病毒株有一定中和能力[註一](NT50304、422、113)。

然而,感染後對不同病毒株的保護能力不同,感染WA1與Delta的小鼠血清雖然對於非自身病毒株中和能力較弱,但仍具有一定程度的中和能力。

而感染Omicron的小鼠血清對於不同的病毒株,則幾乎沒有中和能力(NT50<10)。

結果顯示,在沒有打疫苗的形況下,若感染Omicron後,未來是否能避免再度感染Omicron的效果其實有限,尤其面對未來可能有的新變異株,保護效果可能幾乎沒有!沒打疫苗,感染Omicron後,血清的中和病毒能力。

圖/作者該研究同時收集了10位未打疫苗的Omieron確診者血清,結果與小鼠試驗類似,這些確診者的血清只對Omicron病毒株有良好的中和能力(NT501452),而對於其他不同的變異株中和能力則較低(NT50<100)。

這樣的結果顯示,如果你未打疫苗而染上Omicron,產生的抗體對於保護你免於其他病毒株的感染效果是非常有限的。

想要「無敵星星」?先打疫苗吧!雖然染上Omicron後的保護力不是這麼高,但台灣目前的疫苗接種率第一劑、第二劑與追加劑分別為91.18%、82.74%與69.47%2,那如果是有打完疫苗後又被感染,是否能在提供額外的保護力呢?該篇研究針對了打完二至三劑默德那或輝瑞疫苗後又被Omicron或Delta突破感染的人進行研究,發現打完疫苗的人又被感染後,其血清對於不同的病毒株皆有非常好的中和能力,被Delta或Omicron突破性感染的人對皆對於WA1有最好的中和能力(NT5017994與23308),此外,其對於Omicron的中和能力雖相對較低,但仍然具有良好的中和能力(NT501241與1692),值得注意的是,這些打完疫苗後又被突破性感染的案例,其血清對不同病毒株的平均中和能力為單純打完三劑疫苗的人的十倍!接種二劑疫苗以上,感染Omicron或Delta後,血清的中和病毒能力。

圖/作者須注意的是,無敵星星也並非真的無敵,該研究只利用血清中和病毒的能力來闡述研究結果,而未真的進行活體保護力相關實驗,且資料量未達到大規模分析的等級。

此外,對於未來新的病毒株是否能有保護力也是未知,可以確定的是,對於未打疫苗的人與完整接種的人相比,染疫後再度染疫的風險也較大。

想要染疫後能夠避免再次感染?就目前數據上來說,完成疫苗接種才是最好的方法!註解註一:中和能力為抗體能防止細胞免於細菌或病原體感染,提供保護力之能力。

NT50即為能中和百分之五十病毒感染的血清稀釋倍數,數值越高,代表血清即使稀釋高倍後仍能中和百分之五十的病毒。

亦即可能提供較佳的保護力。

參考資料Suryawanshi,R.K.;Chen,I.P.;Ma,T.;Syed,A.M.;Brazer,N.;Saldhi,P.;Simoneau,C.R.;Ciling,A.;Khalid,M.M.;Sreekumar,B.,etal.Limitedcross-variantimmunityfromSARS-CoV-2Omicronwithoutvaccination.Nature2022.衛福部疾管署COVID-19疫苗接種統計資料 國中生的科普素養閱讀平台:《科學生》,素養強化訓練今天就展開!相關標籤:COVID-19COVID-19疫苗COVID19OmicronOmicron變異株中和抗體中和病毒病毒確診血清熱門標籤:大麻量子力學CT值女科學家後遺症快篩時間所有討論 1登入與大家一起討論#1fierycloud2022/07/17回覆那個語境感覺更類似歐美的康復者證明?只是歐美的有點差異,比如說檢驗方式跟配套證書之類的!(美國的雖然也可以用快篩,但是卻也需要醫療院所另外的證明。

)美國的雖然比較短(90天),但是有明寫,就算密切接觸,無徵的狀況,也免驗免隔離。

(因為重點其實是免驗?這樣就不會有結果?)https://www.cdc.gov/coronavirus/2019-ncov/your-health/quarantine-isolation.html精緻型硬漢1篇文章・ 0位粉絲+追蹤對生物醫學與新藥開發充滿興趣,期待可以為相關領域有所貢獻的男子RELATED相關文章無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗國殤之後:集體哀慟的調適壓力、過勞加速大腦老化——定期測驗腦年齡,守護腦部健康來自姊姊的愛:約兒力氣要多大,才能把弟弟的肋骨抱斷?TRENDING熱門討論即時熱門無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗12小時前未知死,焉知生?從南美館《亞洲的地獄與幽魂》爭議看信仰的存在危機22小時前你是哪個系的寶可夢大師?科學能解!514小時前本土科普影視如何突破、創新?科技部邀6團隊談製作甘苦121小時前為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富——著色的演化生物學72022/06/28遲來的墮胎除罪:21世紀的澳大利亞新南威爾斯州62天前如何選擇「基因交友軟體」?——影集《真愛基因》的現實22022/06/29【貓心專欄】星座/血型/性格,哪一個影響了你顏色偏好?22022/06/26001文字分享友善列印001專欄科學傳播編輯精選萬物之理除了發現量子力學,普朗克還有第二個重大發現是什麼?賴昭正・2022/07/16・4600字・閱讀時間約9分鐘+追蹤文/賴昭正前清大化學系教授、系主任、所長;合創科學月刊(瓦特斯頓)論文的歷史說明了:…價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。

-瑞利爵士(LordRayleigh)1904年諾貝爾物理獎得主在「抱歉了愛因斯坦,但我真的沒辦法頒獎給那個酷理論—為何相對論與諾貝爾獎擦身而過?」裡,筆者提到了19世紀末的物理學家曾經非常自滿地認為物理學上的基本問題都已經解決了,剩下的只是細節問題。

例如1874年,量子師祖普朗克(MaxPlanck)的指導教授久利(PhilippvonJolly)就告訴他說:「在這個(物理)領域,幾乎所有的東西都已經被發現了,剩下的就是填補一些不重要的漏洞。

」普朗克回答說他不想發現新的東西,只想「了解」這個領域的已知基礎。

現在我們當然知道事與願違,19世紀末的物理不但未靜如止水,反而是刮起大風大浪的預兆。

例如誰想到就在那個世紀結束前的12月,普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念,成了發現量子力學的第一大功臣(參見「黑體輻射光譜與量子革命」),改變了整個物理學家對客觀世界的看法。

普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念。

圖/Wikipedia而後在20世紀才開始不久的1905年,瑞士專利局最低等級的審查員愛因斯坦(AlbertEinstein)更不知道從何處突然冒出一篇題爲「關於運動物體的電動力學(OntheElectrodynamicsofMovingBodies)」論文,吹起了20世紀的第一個物理革命號角,徹底改變了統領物理界300多年的牛頓時空觀念。

可是良馬⎯愛因斯坦這一篇論文—如果沒有遇到伯樂,它會是一匹良駒嗎?如果不會,那誰是那一篇論文的伯樂呢?誰會是愛因斯坦的伯樂?這篇題為「關於運動物體的電動力學」的論文事實上是很奇怪。

這標題通常應是討論磁性或介電物質在電磁場中的運動特性,但愛因斯坦根本沒有分析這個主題,而是花了很多篇幅在前半部分討論:許多物理學家都認為理所當然之某些基本物理概念的性質。

而論文中唯一明確討論之法拉第的電磁感應實驗,則是用當時的理論就可以充分解釋、大多數物理學家認為已不甚重要性的題目;最後建議丟棄一些廣泛使用的概念(例如「同時」及以太等)。

更不尋常的是:作者是一位名不見經傳、任職於專利局的小職員,其撰寫的風格和格式都非正統,沒有引用任何當時的文獻!愛因斯坦曾希望他當年在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;因此在論文出版後,他妹妹後來回憶說:「(愛因斯坦)曾努力翻閱《物理年鑑》,希望能找到對他理論的回應。

……但他非常失望,出版之後(的反應)是冰冷的沉默。

」愛因斯坦寫出「關於運動物體的電動力學」受到普朗克的讚賞,圖為1929年愛因斯坦獲得普郎克獎(Planckmedal)時,與普朗克的合影。

圖/AmericanInstituteofPhysics,EmilioSegreVisualArchives.在無奈的失望中,愛因斯坦突然於1906年3月收到了第一個物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克!普朗克給愛因斯坦寫了一封充滿熱情洋溢的信,謂其相對論論文「立即引起了我的熱烈關注」,並將到專利局所在地伯爾尼(Bern)拜訪他!愛因斯坦當然很興奮,立即寫信告訴他以前的家教學生、合創「奧林匹亞學院(OlympiaAcademy)」、剛剛搬離伯爾尼的好友索洛文(MauriceSolovine):「我的論文倍受讚賞,並引起了進一步的研究。

普朗克教授最近寫信告知我此事。

」普朗克是如何成為愛因斯坦的伯樂普朗克當時擔任《物理年鑑》編輯,在接觸到愛因斯坦那篇關於空間、時間、和光速的想法前,他事實上已經相當明白:當涉及到由不同觀察者測量的光速時,古典物理學存在一個令人討厭的問題,即測不出地球在絕對靜止之以太中的速度,迫使當時一些名物理學家到處貼補漏洞。

因此當愛因斯坦大喊(開玩笑的,當時他還是一位無名小卒,怎麼敢大喊):不要再費心了,讓我們假設(在任何慣性參考系中測量的)光速為一定值,來取代「標尺和時鐘不會永遠誤導我們」之錯誤概念時,普朗克立舉雙手贊成。

在其1949年的自傳裡,普朗克謂:「光速之於相對論就像基本的作用量子之於量子論:光速是相對論的絕對核心。

」在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,因此德國在許多方面對愛因斯坦之相對論的反應是獨一無二的;例如1905-1911年期間有關相對論的論文,沒有其它國家在數量上能夠與德國相媲美。

在法國、英國和美國的回應中,雖然也有熱情的支持,但只有在德國才有人說「我理解愛因斯坦的研究」。

但當時的「不敢苟同」聲事實上也不少;例如德國物理學家索末菲(ArnoldSommerfeld)一大早就認為愛因斯坦的理論方法有某種猶太色彩(後來被利用成為反猶太主義者的工具),對秩序和絕對的概念缺乏應有的尊重,而且似乎沒有堅實的基礎。

1902年諾貝爾物理獎得主、荷蘭理論物理大師洛倫茲(HendrikLorentz)在1907年更寫道:「愛因斯坦的論文雖然出色,但在我看來,這種難以理解和無法形象化的教條裡仍然存在一些幾乎不健康的東西。

一位英國人幾乎不會給我們這種理論。

」普朗克顯然是第一位認識到愛因斯坦在相對論方面開創性工作的主要人物,也是愛因斯坦在科學界最忠誠的擁護者。

兩人在個性上雖然非常不相似(前者非常保守,後者不理傳統),但也成為最親密的朋友。

普朗克於1906年公開為愛因斯坦理論辯護,反對一波又一波的懷疑論者,寫信給愛因斯坦說「(我們)必須團結一致」。

他將愛因斯坦的理論描述為洛倫茲理論的「延伸」(generalization),並將「洛倫茲-愛因斯坦理論」命名為現在大家所接受的「相對論」。

儘管如此,普朗克還是不接受狹義相對論之無可避免的「不需要以太」結論。

普朗克不接受狹義相對論之無可避免的「不需要以太」結論。

圖/wikipedia普朗克是第一位以愛因斯坦理論為基礎來發展的物理學家。

他在1906年春天發表的一篇文章中,證明愛因斯坦的相對論符合物理學基礎之「最小作用原理」(leastactionprinciple):任何物體(包括光)在兩點之間的移動都應該遵循最簡單的路徑,開展了如何在這個新的彈性時空中正確處理物體的動力學。

 普朗克並未履約到伯爾尼拜訪愛因斯坦,只派比他更先獲得諾貝爾獎(1914年)的助手勞鴻(MaxvonLaue)於1906年夏天去拜訪本以為應在伯爾尼大學任教的愛因斯坦。

勞鴻與愛因斯坦兩人相談甚歡,不但成為終生好友,前者在此後四年內還寫了八篇相對論論文,包括嚴格地證明了E=mc2。

愛因斯坦謂勞鴻1911年所寫的第一本相對論教科書「是一個小傑作,其中的一些內容是他的知識產權」,並從中學習到了一些他後來創建廣義相對論所需的張量(tensor)數學。

瓦特斯頓發展的氣體動力學瓦特斯頓(JohnWaterston,1811-1883)是蘇格蘭物理學家,在印度工作期間發展了氣體動力學理論,謂氣體分子與容器表面的碰撞導致我們感受到氣體壓力,正確地推導出理想氣體定律。

他於1845年投稿到英國皇家學會,但審稿人認為那論文「不過是胡說八道」而被拒絕出版;現在的物理學家都認為馬克斯威(JamesMaxwell)為氣體動力學(kinetictheoryofgases)的創始者。

JohnJamesWaterston。

圖/Wikipedia瓦特斯頓去世幾年後,瑞利爵士(LordRayleigh,1904年諾貝爾獎得主,當時的皇家學會秘書)從皇家學會的檔案中挖掘出那篇論文,將它重新發表於1892年的《皇家學會哲學彙刊》上。

瑞利爵士警告說:。

(瓦特斯頓)論文的歷史說明了:因為科學界不願在其印刷品中記錄價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。

也許有人可能會更進一步(建議)說,一位相信自己有能力做大事的年輕作家,應該在開始更高的飛行之前,先通過範圍有限、且價值容易判斷的工作來獲得科學界的良好認可。

相信這類事件在物理學上是時常發生的。

在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者就提到了1924年6月4日,一位任教於東巴基斯坦的講師波思(SatyendraBose)將一篇被英國名《哲學雜誌》(ThePhilosophicalMagazine)退稿的論文,轉寄給愛因斯坦,並附函謂「……如果你認為它值得發表,可否請您將它譯出(成德文),投稿到《物理學雜誌》(ZeitschriftfürPhysik)…」。

波思毫無疑問地是一位「不知名的作者」,那篇文章也毫無疑問地是「價值不確定,高度的投機性」!還好愛因斯坦眼光獨特,否則不但波思可能淪為另一個瓦特斯頓,量子統計力學是否會那麼早就出現就不得而知了。

結論有歷史學家說普朗克在近代物理上有兩大貢獻,其一是發現量子力學,另外一個則是發現愛因斯坦!愛因斯坦發表那篇「價值不確定」之狹義相對論論文時也是一位「不知名的作者」,因此如果沒有普朗克慧眼識英雄,幫他推銷與辯護,愛因斯坦或許也可能淪為另一個瓦特斯頓,那篇論文可能於1908年在閔可夫斯基(HermannMinkowski)的時空(spacetime)中消失[註]!有了理論物理界權威普朗克教授做後盾,愛因斯坦平步青雲、離開專利局、進入學府、及成名應只是遲早的事情。

說來有趣,在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者談到了如果沒有愛因斯坦興風作浪,普朗克是否會成為創建近代物理的第一革命先鋒(量子力學);而在這裡我們卻在懷疑如果沒有普朗克拔刀相助,愛因斯坦是否會成為創建近代物理的第二革命先鋒(相對論)。

至於愛因斯坦是否真是首位發現狹義相對論的物理學家,則請待下回分解。

註解事實上普朗克及愛因斯坦本人完全低估了該篇論文的創見性,認為它只是洛倫茲理論的「延伸」而已。

愛因斯坦的數學老師閔可夫斯基於1908年將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowskispace或spacetime)」的嶄新觀念,奠定了相對論的數學基礎,成為現在物理學家學習、了解、與討論愛因斯坦相對論主要(唯一)工具。

延伸閱讀賴昭正:《我愛科學》(華騰文化有限公司,2017年12月出版):裡面收集了:「乙太存在與否的爭辯」(科學月刊,2017年5月號)、「量子力學的開山祖師-普朗克」(科學月刊,1982年2月號)等。

「黑體輻射光譜與量子革命」(科學月刊,2022年7月號)。

「畢業求職碰壁,在伯爾尼專利局思索的愛因斯坦」(泛科學,2021/05/18)。

「思考別人沒有想到的東西——誰發現量子力學?」(泛科學,2022/06/01)。

「愛因斯坦其實沒那麼神?」(泛科學,2016/031/16)。

「抱歉了愛因斯坦,但我真的沒辦法頒獎給那個酷理論——為何相對論與諾貝爾獎擦身而過?」(泛科學,2021/07/28)。

 國中生的科普素養閱讀平台:《科學生》,素養強化訓練今天就展開!相關標籤:愛因斯坦普朗克物理物理學物理學家相對論量子量子力學量子物理熱門標籤:大麻量子力學CT值女科學家後遺症快篩時間所有討論 0登入與大家一起討論賴昭正31篇文章・ 30位粉絲+追蹤成功大學化學工程系學士,芝加哥大學化學物理博士。

在芝大時與一群留學生合創「科學月刊」。

一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。

自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。

晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。

正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。

首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

RELATED相關文章洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面製程」——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗除了發現量子力學,普朗克還有第二個重大發現是什麼?未知死,焉知生?從南美館《亞洲的地獄與幽魂》爭議看信仰的存在危機TRENDING熱門討論即時熱門無敵星星並非真的無敵!關鍵在於:有沒有接種疫苗12小時前未知死,焉知生?從南美館《亞洲的地獄與幽魂》爭議看信仰的存在危機22小時前你是哪個系的寶可夢大師?科學能解!514小時前本土科普影視如何突破、創新?科技部邀6團隊談製作甘苦121小時前為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富——著色的演化生物學72022/06/28遲來的墮胎除罪:21世紀的澳大利亞新南威爾斯州62天前如何選擇「基因交友軟體」?——影集《真愛基因》的現實22022/06/29【貓心專欄】星座/血型/性格,哪一個影響了你顏色偏好?22022/06/26繁简



請為這篇文章評分?