Critical point (mathematics) - Wikipedia
文章推薦指數: 80 %
When dealing with complex variables, a critical point is, similarly, a point in the function's domain where it is either not holomorphic or the derivative is ...
Criticalpoint(mathematics)
FromWikipedia,thefreeencyclopedia
Jumptonavigation
Jumptosearch
Pointwherethederivativeofafunctioniszero
Forotheruses,seeCriticalpoint.
Thisarticleincludesalistofgeneralreferences,butitlackssufficientcorrespondinginlinecitations.Pleasehelptoimprovethisarticlebyintroducingmoreprecisecitations.(January2015)(Learnhowandwhentoremovethistemplatemessage)
Theabscissae(x-coordinates)oftheredcirclesarestationarypoints;thebluesquaresareinflectionpoints.
Criticalpointisawidetermusedinmanybranchesofmathematics.
Whendealingwithfunctionsofarealvariable,acriticalpointisapointinthedomainofthefunctionwherethefunctioniseithernotdifferentiableorthederivativeisequaltozero.[1]Whendealingwithcomplexvariables,acriticalpointis,similarly,apointinthefunction'sdomainwhereitiseithernotholomorphicorthederivativeisequaltozero.[2][3]Likewise,forafunctionofseveralrealvariables,acriticalpointisavalueinitsdomainwherethegradientisundefinedorisequaltozero.[4]
Thevalueofthefunctionatacriticalpointisacriticalvalue.
ThissortofdefinitionextendstodifferentiablemapsbetweenRmandRn,acriticalpointbeing,inthiscase,apointwheretherankoftheJacobianmatrixisnotmaximal.Itextendsfurthertodifferentiablemapsbetweendifferentiablemanifolds,asthepointswheretherankoftheJacobianmatrixdecreases.Inthiscase,criticalpointsarealsocalledbifurcationpoints.
Inparticular,ifCisaplanecurve,definedbyanimplicitequationf(x,y)=0,thecriticalpointsoftheprojectionontothex-axis,paralleltothey-axisarethepointswherethetangenttoCareparalleltothey-axis,thatisthepointswhere
∂
f
∂
y
(
x
,
y
)
=
0
{\displaystyle{\frac{\partialf}{\partialy}}(x,y)=0}
Inotherwords,thecriticalpointsarethosewheretheimplicitfunctiontheoremdoesnotapply.
ThenotionofacriticalpointallowsthemathematicaldescriptionofanastronomicalphenomenonthatwasunexplainedbeforethetimeofCopernicus.Astationarypointintheorbitofaplanetisapointofthetrajectoryoftheplanetonthecelestialsphere,wherethemotionoftheplanetseemstostopbeforerestartingintheotherdirection.Thisoccursbecauseofacriticalpointoftheprojectionoftheorbitintotheeclipticcircle.
Contents
1Criticalpointofasinglevariablefunction
1.1Examples
1.2Locationofcriticalpoints
2Criticalpointsofanimplicitcurve
2.1Useofthediscriminant
3Severalvariables
3.1Applicationtooptimization
4Criticalpointofadifferentiablemap
5Applicationtotopology
6Seealso
7References
Criticalpointofasinglevariablefunction[edit]
Acriticalpointofafunctionofasinglerealvariable,f(x),isavaluex0inthedomainoffwhereitisnotdifferentiableoritsderivativeis0(f′(x0)=0).[1]Acriticalvalueistheimageunderfofacriticalpoint.Theseconceptsmaybevisualizedthroughthegraphoff:atacriticalpoint,thegraphhasahorizontaltangentifyoucanassignoneatall.
Noticehow,foradifferentiablefunction,criticalpointisthesameasstationarypoint.
Althoughitiseasilyvisualizedonthegraph(whichisacurve),thenotionofcriticalpointofafunctionmustnotbeconfusedwiththenotionofcriticalpoint,insomedirection,ofacurve(seebelowforadetaileddefinition).Ifg(x,y)isadifferentiablefunctionoftwovariables,theng(x,y)=0istheimplicitequationofacurve.Acriticalpointofsuchacurve,fortheprojectionparalleltothey-axis(themap(x,y)→x),isapointofthecurvewhere
∂
g
∂
y
(
x
,
y
)
=
0
{\displaystyle{\frac{\partialg}{\partialy}}(x,y)=0}
.Thismeansthatthetangentofthecurveisparalleltothey-axis,andthat,atthispoint,gdoesnotdefineanimplicitfunctionfromxtoy(seeimplicitfunctiontheorem).If(x0,y0)issuchacriticalpoint,thenx0isthecorrespondingcriticalvalue.Suchacriticalpointisalsocalledabifurcationpoint,as,generally,whenxvaries,therearetwobranchesofthecurveonasideofx0andzeroontheotherside.
Itfollowsfromthesedefinitionsthatadifferentiablefunctionf(x)hasacriticalpointx0withcriticalvaluey0,ifandonlyif(x0,y0)isacriticalpointofitsgraphfortheprojectionparalleltothex-axis,withthesamecriticalvaluey0.Iffisnotdifferentiableatx0duetothetangentbecomingparalleltothey-axis,thenx0isagainacriticalpointoff,butnow(x0,y0)isacriticalpointofitsgraphfortheprojectionparalleltoy-axis.
Forexample,thecriticalpointsoftheunitcircleofequationx2+y2-1=0are(0,1)and(0,-1)fortheprojectionparalleltothex-axis,and(1,0)and(-1,0)forthedirectionparalleltothey-axis.Ifoneconsiderstheupperhalfcircleasthegraphofthefunction
f
(
x
)
=
1
−
x
2
{\displaystylef(x)={\sqrt{1-x^{2}}}}
,thenx=0isacriticalpointwithcriticalvalue1duetothederivativebeingequalto0,andx=-1andx=1arecriticalpointswithcriticalvalue0duetothederivativebeingundefined.
Examples[edit]
Thefunctionf(x)=x2+2x+3isdifferentiableeverywhere,withthederivativef′(x)=2x+2.Thisfunctionhasauniquecriticalpoint−1,becauseitistheuniquenumberx0forwhich2x0+2=0.Thispointisaglobalminimumoff.Thecorrespondingcriticalvalueisf(−1)=2.Thegraphoffisaconcaveupparabola,thecriticalpointistheabscissaofthevertex,wherethetangentlineishorizontal,andthecriticalvalueistheordinateofthevertexandmayberepresentedbytheintersectionofthistangentlineandthey-axis.
Thefunctionf(x)=x2/3isdefinedforallxanddifferentiableforx≠0,withthederivativef′(x)=2x−1/3/3.Sincefisnotdifferentiableatx=0andf'(x)≠0otherwise,itistheuniquecriticalpoint.Thegraphofthefunctionfhasacuspatthispointwithverticaltangent.Thecorrespondingcriticalvalueisf(0)=0.
Theabsolutevaluefunctionf(x)=|x|isdifferentiableeverywhereexceptatcriticalpointx=0,whereithasaglobalminimumpoint,withcriticalvalue0.
Thefunctionf(x)=1/xhasnocriticalpoints.Thepointx=0isnotacriticalpointbecauseitisnotincludedinthefunction'sdomain.
Locationofcriticalpoints[edit]
BytheGauss–Lucastheorem,allofapolynomialfunction'scriticalpointsinthecomplexplanearewithintheconvexhulloftherootsofthefunction.Thusforapolynomialfunctionwithonlyrealroots,allcriticalpointsarerealandarebetweenthegreatestandsmallestroots.
Sendov'sconjectureassertsthat,ifallofafunction'srootslieintheunitdiskinthecomplexplane,thenthereisatleastonecriticalpointwithinunitdistanceofanygivenroot.
Criticalpointsofanimplicitcurve[edit]
Seealso:Algebraiccurve
Criticalpointsplayanimportantroleinthestudyofplanecurvesdefinedbyimplicitequations,inparticularforsketchingthemanddeterminingtheirtopology.Thenotionofcriticalpointthatisusedinthissection,mayseemdifferentfromthatofprevioussection.Infactitisthespecializationtoasimplecaseofthegeneralnotionofcriticalpointgivenbelow.
Thus,weconsideracurveCdefinedbyanimplicitequation
f
(
x
,
y
)
=
0
{\displaystylef(x,y)=0}
,wherefisadifferentiablefunctionoftwovariables,commonlyabivariatepolynomial.ThepointsofthecurvearethepointsoftheEuclideanplanewhoseCartesiancoordinatessatisfytheequation.Therearetwostandardprojections
π
y
{\displaystyle\pi_{y}}
and
π
x
{\displaystyle\pi_{x}}
,definedby
π
y
(
(
x
,
y
)
)
=
x
{\displaystyle\pi_{y}((x,y))=x}
and
π
x
(
(
x
,
y
)
)
=
y
,
{\displaystyle\pi_{x}((x,y))=y,}
thatmapthecurveontothecoordinateaxes.Theyarecalledtheprojectionparalleltothey-axisandtheprojectionparalleltothex-axis,respectively.
ApointofCiscriticalfor
π
y
{\displaystyle\pi_{y}}
,ifthetangenttoCexistsandisparalleltothey-axis.Inthatcase,theimagesby
π
y
{\displaystyle\pi_{y}}
ofthecriticalpointandofthetangentarethesamepointofthex-axis,calledthecriticalvalue.Thusapointiscriticalfor
π
y
{\displaystyle\pi_{y}}
ifitscoordinatesaresolutionofthesystemofequations:
f
(
x
,
y
)
=
∂
f
∂
y
(
x
,
y
)
=
0
{\displaystylef(x,y)={\frac{\partialf}{\partialy}}(x,y)=0}
Thisimpliesthatthisdefinitionisaspecialcaseofthegeneraldefinitionofacriticalpoint,whichisgivenbelow.
Thedefinitionofacriticalpointfor
π
x
{\displaystyle\pi_{x}}
issimilar.IfCisthegraphofafunction
y
=
g
(
x
)
{\displaystyley=g(x)}
,then(x,y)iscriticalfor
π
x
{\displaystyle\pi_{x}}
ifandonlyifxisacriticalpointofg,andthatthecriticalvaluesarethesame.
SomeauthorsdefinethecriticalpointsofCasthepointsthatarecriticalforeither
π
x
{\displaystyle\pi_{x}}
or
π
y
{\displaystyle\pi_{y}}
,althoughtheydependnotonlyonC,butalsoonthechoiceofthecoordinateaxes.Itdependsalsoontheauthorsifthesingularpointsareconsideredascriticalpoints.Infactthesingularpointsarethepointsthatsatisfy
f
(
x
,
y
)
=
∂
f
∂
x
(
x
,
y
)
=
∂
f
∂
y
(
x
,
y
)
=
0
{\displaystylef(x,y)={\frac{\partialf}{\partialx}}(x,y)={\frac{\partialf}{\partialy}}(x,y)=0}
,
andarethussolutionsofeithersystemofequationscharacterizingthecriticalpoints.Withthismoregeneraldefinition,thecriticalpointsfor
π
y
{\displaystyle\pi_{y}}
areexactlythepointswheretheimplicitfunctiontheoremdoesnotapply.
Useofthediscriminant[edit]
WhenthecurveCisalgebraic,thatiswhenitisdefinedbyabivariatepolynomialf,thenthediscriminantisausefultooltocomputethecriticalpoints.
Hereweconsideronlytheprojection
π
y
{\displaystyle\pi_{y}}
;Similarresultsapplyto
π
x
{\displaystyle\pi_{x}}
byexchangingxandy.
Let
Disc
y
(
f
)
{\displaystyle\operatorname{Disc}_{y}(f)}
bethediscriminantoffviewedasapolynomialinywithcoefficientsthatarepolynomialsinx.Thisdiscriminantisthusapolynomialinxwhichhasthecriticalvaluesof
π
y
{\displaystyle\pi_{y}}
amongitsroots.
Moreprecisely,asimplerootof
Disc
y
(
f
)
{\displaystyle\operatorname{Disc}_{y}(f)}
iseitheracriticalvalueof
π
y
{\displaystyle\pi_{y}}
suchthecorrespondingcriticalpointisapointwhichisnotsingularnoraninflectionpoint,orthex-coordinateofanasymptotewhichisparalleltothey-axisandistangent"atinfinity"toaninflectionpoint(inflexionasymptote).
Amultiplerootofthediscriminantcorrespondeithertoseveralcriticalpointsorinflectionasymptotessharingthesamecriticalvalue,ortoacriticalpointwhichisalsoaninflectionpoint,ortoasingularpoint.
Severalvariables[edit]
Forafunctionofseveralrealvariables,apointP(thatisasetofvaluesfortheinputvariables,whichisviewedasapointinRn)iscriticalifitisapointwherethegradientisundefinedorthegradientiszero.[4]Thecriticalvaluesarethevaluesofthefunctionatthecriticalpoints.
Acriticalpoint(wherethefunctionisdifferentiable)maybeeitheralocalmaximum,alocalminimumorasaddlepoint.IfthefunctionisatleasttwicecontinuouslydifferentiablethedifferentcasesmaybedistinguishedbyconsideringtheeigenvaluesoftheHessianmatrixofsecondderivatives.
AcriticalpointatwhichtheHessianmatrixisnonsingularissaidtobenondegenerate,andthesignsoftheeigenvaluesoftheHessiandeterminethelocalbehaviorofthefunction.Inthecaseofafunctionofasinglevariable,theHessianissimplythesecondderivative,viewedasa1×1-matrix,whichisnonsingularifandonlyifitisnotzero.Inthiscase,anon-degeneratecriticalpointisalocalmaximumoralocalminimum,dependingonthesignofthesecondderivative,whichispositiveforalocalminimumandnegativeforalocalmaximum.Ifthesecondderivativeisnull,thecriticalpointisgenerallyaninflectionpoint,butmayalsobeanundulationpoint,whichmaybealocalminimumoralocalmaximum.
Forafunctionofnvariables,thenumberofnegativeeigenvaluesoftheHessianmatrixatacriticalpointiscalledtheindexofthecriticalpoint.Anon-degeneratecriticalpointisalocalmaximumifandonlyiftheindexisn,or,equivalently,iftheHessianmatrixisnegativedefinite;itisalocalminimumiftheindexiszero,or,equivalently,iftheHessianmatrixispositivedefinite.Fortheothervaluesoftheindex,anon-degeneratecriticalpointisasaddlepoint,thatisapointwhichisamaximuminsomedirectionsandaminimuminothers.
Applicationtooptimization[edit]
Mainarticle:Mathematicaloptimization
ByFermat'stheorem,alllocalmaximaandminimaofacontinuousfunctionoccuratcriticalpoints.Therefore,tofindthelocalmaximaandminimaofadifferentiablefunction,itsuffices,theoretically,tocomputethezerosofthegradientandtheeigenvaluesoftheHessianmatrixatthesezeros.Thisdoesnotworkwellinpracticebecauseitrequiresthesolutionofanonlinearsystemofsimultaneousequations,whichisadifficulttask.Theusualnumericalalgorithmsaremuchmoreefficientforfindinglocalextrema,butcannotcertifythatallextremahavebeenfound.
Inparticular,inglobaloptimization,thesemethodscannotcertifythattheoutputisreallytheglobaloptimum.
Whenthefunctiontominimizeisamultivariatepolynomial,thecriticalpointsandthecriticalvaluesaresolutionsofasystemofpolynomialequations,andmodernalgorithmsforsolvingsuchsystemsprovidecompetitivecertifiedmethodsforfindingtheglobalminimum.
Criticalpointofadifferentiablemap[edit]
GivenadifferentiablemapffromRmintoRn,thecriticalpointsoffarethepointsofRm,wheretherankoftheJacobianmatrixoffisnotmaximal.[5]Theimageofacriticalpointunderfisacalledacriticalvalue.Apointinthecomplementofthesetofcriticalvaluesiscalledaregularvalue.Sard'stheoremstatesthatthesetofcriticalvaluesofasmoothmaphasmeasurezero.
Someauthors[6]giveaslightlydifferentdefinition:acriticalpointoffisapointofRmwheretherankoftheJacobianmatrixoffislessthann.Withthisconvention,allpointsarecriticalwhenm
延伸文章資訊
- 1Topics in Critical Point Theory - 第 5 頁 - Google 圖書結果
Proposition 1.1.5 IfCq(G, 00) aé O and G has only afinite number ofcritical points and satisfies ...
- 2駐點_百度百科
在微積分,駐點(Stationary Point)又稱為平穩點、穩定點或臨界點(Critical Point)是函數的一階導數為零,即在“這一點”,函數的輸出值停止增加或減少。
- 3critical point - Yahoo奇摩字典搜尋結果
critical point · 查看更多. IPA[ˈkridəkəl point]. n. a point on a phase diagram at which both the liqu...
- 4critical point 中文意思是什麼
critical point 中文意思是什麼. critical point 解釋. 【物理學】臨界點,駐點。 critical : adj 1 批判的, ...
- 5Critical point (mathematics) - Wikipedia
When dealing with complex variables, a critical point is, similarly, a point in the function's do...