How to Measure/Calculate Radiation Dose in Patients?

文章推薦指數: 80 %
投票人數:10人

The International Electrotechnical Commission (IEC) defines a patient entrance reference point as 15 cm from the isocentre of a C-arm x-ray unit ... Skiptomaincontent Advertisement SearchSpringerLink Search HowtoMeasure/CalculateRadiationDoseinPatients? DownloadPDF DownloadPDF AssociatedContent Partofacollection: RadiationProtection AbstractPatientsinfluoroscopicallyguidedinterventions(FGI)maybeexposedtosubstantialradiationdoselevels(SRDL).Themostcommonlyreportedadversereactionsareskininjurieswitherythemaornecrosis.Itisthereforeimportantfortheinterventionalradiologisttoknowdeterministiceffectswiththeirthresholddoses.Ifpossibleallrelevantmodalityparametersshouldbedisplayedontheinterventionalistsscreen.Dosimetricparametersshouldbedisplayedindigitalimagingandcommunicationsinmedicine(DICOM)unitsandstoredasDICOMRadiationDoseStructuredReport(RDSR).Thepeakskindose(PSD)isthemostrelevantriskparameterforskininjuries.Dosemanagementsystems(DMS)helpoptimisingradiationexposureofpatients.However,theircalculationofskindosemapsisonlyavailableafteraFGI.Therefore,dosemapsandPSDshouldpreferablybecalculatedanddisplayedinrealtimebythemodality. IntroductionPatientexposureinfluoroscopicallyguidedinterventions(FGI)spansawidedoserangeandcanreachlevelsatwhichdeterministiceffectsmayoccur.Thereasonsforthisincludethevarietyofmodalitiesusedandthewiderangeofinterventionalprocedures.Itisthereforeimportantincomplexinterventionswithsubstantialradiationdoselevels(SRDL)tobeabletomeasureorestimatethepatientdose.Thisdoseinformationshouldnotonlybeavailableafteraprocedurebymeansoftherecordedexposureparameters,butalsototheinterventionalistduringaFGI.Thefollowingarticleessentiallyreferstostationaryangiographysystemsonwhichcomplexinterventionse.g.inradiology,neuroradiology,cardiologyorvascularsurgerycanbeperformed.PatientexposureinFGIdependsonmanypatient,procedureandmodalityrelatedparameterslikekV,mAs,filtration,detectorentrancedoserate,pulserate,numberofimages,imageprocessing,fluoroscopytime,geometricpropertiesofthemodalityandfieldofview(FOV)[1,2].TheDICOMradiationdosestructuredreport(RDSR)isavailableinmostnewangiographicsystemsandenablesamoredetailedanalysisofallexposureparametersfromfluoroscopyandradiographicimagesorcineseries[3].Forallaspectsofqualityassuranceanddosemanagement,theinvolvementofamedicalphysicsexpert(MPE)isthereforeimperativeinaccordancewiththeEuropeanDirective2013/59/EURATOM(EU-BSS)[4],especiallyforprocedureswithahigherdosesuchascomputedtomography(CT)orFGI.Furthermore,FGIaretheprocedureswiththehighestriskofdeterministiceffects.Ifappropriate,thesearetobereportedtothecompetentauthoritiesas"unintendedexposures"inaccordancewiththenationalimplementationoftheEU-BSS.HowtoAnalyseDICOMDoseReportsinFGIAbout20 yearsago,exposureparametersfromFGIwereusuallyrecordedmanuallyinaRadiologyorHospitalInformationSystem(RIS/HIS)orpaperbased.Later,storagewasprovidedtogetherwiththeangiographicimagesinapicturearchivingandcommunicationsystem(PACS)asbitmapreport.Alloftheserecordingmethodsallowonlydifficultanalysisofthepatientexposure.TodayDICOMRDSRisavailableinmostnewangiographysystemsandprovidesaneasysolutiontocollectdoseparameters.Thisincludesallexposureparametersforeachfluoroscopicscene,allradiographicimagesorcineserieswithkV,mAs,geometricalparametersofC-arm,detectorandmore.Table1showsanexcerptofanangiographyRDSR.InradiographyandCT,theexposuredatacanbeextractedrelativelyreliablefromtheDICOMimagedataevenwithoutRDSR.Thisisnotthecasewithfluoroscopicprocedures,asfluoroscopyscenesareusuallynotstoredinthePACS.TheDICOMimagedatathereforelackthedosecontributionfromfluoroscopy,whichcaneasilyexceed50%ofthetotaldosedependingonthetypeofintervention.RecordingandprocessingofpatientexposurewasdrivenbytheEU-BSSwhichrequiresmemberstatesoftheEuropeanUniontoensurejustificationandoptimisationofradiologicalproceduresandstoreinformationonpatientexposureforanalysisandqualityassurance[4,5].Variouscommercialdosemanagementsystems(DMSs)withvaryingcharacteristicsareavailabletoday[6].IncontrasttoradiographyandCT,complexRDSRreportsarenotalwayscorrectlyandcompletelysavedasDICOMobjectsinFGIandarenotalwayscorrectlyandcompletelyevaluatedbyDMSproviders.Thisisparticularlyimportantbecauseallcontributionsfromfluoroscopyandradiography/cineseriesarerequiredtodeterminethetotalexposureofapatient.Furthermore,acompleterecordingofallindividualradiationeventsisrequiredtocalculatethedosedistributiononthepatient'ssurfaceandtoidentifylocationswhereoverlappingradiationfieldscanleadtoahighpeakskindose(PSD)andthustopotentialdeterministicskininjuries.Table 1ExcerptfromaDICOMRDSRwithrelevantmodalityandexposureparameters.DependingonthetypeofprocedureaRDSRcanconsistsofmanykilobytesofexposureeventsFullsizetableThemostcommonlyusedexposureparametersareKerma-areaproduct(KAP)andAirkermaatthepatiententrancereferencepoint(Ka,r).KAPisusedfordiagnosticreferencelevels(DRLs)inmostcountriesandisalsodisplayedortransmittedbythemanufacturersofallangiographysystems.KAPisapublictaginboththeRadioFluoroscopy(RF)andX-rayangiography(XA)DICOMServiceClassobjects.ThesecondmostimportantparameterisKa,r,whichcorrelatesmorethanKAPwiththeskindose,followedbythetotalfluoroscopytimeinthenumberofcineseriesorimages.KAPandKa,rareusuallytransmittedcumulativelyinRDSRforanentireexamination,whilethedosedistributiononthebodysurfacewithPSDhastobecalculatedfromallindividualexposureevents.SincedosimetricdataareusuallytransferredtoaPACSafteranexaminationhasbeencompleted,thedosedistributionisonlyavailableinaDMSaftertheprocedure.AnonlinedisplayoftheskindosedistributiononthemodalityscreenduringtheinterventionwouldbedesirableinordertoavoidhighPSDbychangingtheprojectiondirectionandhencetheskinentrancefieldfromtimetotime.ParametersofPatientExposurePatientexposuretoradiationcanbemeasureddirectlyorindirectly[7].Directdosimetryrequirestheuseofdosimeters.Realtimemeasurementsareperformedwithionisationchambers,diodes,metaloxidesemiconductorfield-effecttransistors(MOSFET)andotherdevices.Non-realtimemeasurementsusethermoluminescentdosimeters(TLD)oropticallystimulatedluminescencedosimeters(OSL),otherdevicesorfilmdosimetryinearliertimes.Currently,mostofthemoderninterventionalsystemsuseanionizationtransmissionchambertomeasuretheKAPandestimateKa,r.Somemanufacturerscalculatethesedosimetricquantitiesfromthemodalityparameters(e.g.tubeoutput).Directdosimetryistime-consumingandthereforemostlylimitedtomeasurementsonphantomsorpatientsinclinicalstudies.Inclinicalroutine,indirectdosimetrywithdoseparametersderivedfromthemodalitiesareusedbecauseoftheireasyavailability[1].Electronicrealtimedosimetersarealsousedforoccupationaldosimetryofstaffmembers.Itmustbenotedthatthesedosimetersaresuitableformeasuringscatteredradiation,butnotradiationintheprimarybeam,sinceinthiscasetheywilldisplayincorrectdosedata.ModalityRelatedExposureParametersFigure 1showsasimpleillustrationofamonoplaneangiographysystemwiththerelevantdosimetricparameters.Fig.1Monoplaneangiographysystemwithrelevantdosimetricparameters.KAP(orDAP) = DoseAreaProduct,Ka,r = DoseatpatiententrancereferencepointasdefinedbyIEC[9],ESD = EntranceSurfaceDoseFullsizeimageKerma-Area-Product(KAP)KAPistheintegralofairkermaacrosstheentirex-raybeamemittedfromthex-raytube(alsocalledDoseAreaProductDAP)[8].KAPisasurrogatemeasurementfortheentireamountofenergydeliveredtothepatientbythebeam.KAPismeasuredin[Gy*cm2]anddoesnotincludescatter.KAPisthemostimportantandmostfrequentlyusedexposureparameterinradiographicandfluoroscopicexaminations.Itisavailableonmostmodalitiesanddisplayandrecordingisrequiredbylawinmanycountries.MostoftheDRLsinradiographyandfluoroscopyarebasedonKAP.However,KAPdoesnotallowanestimateabouttheriskofdeterministicinjuriestotheskinororgans,asKAPisaproductofdoseandareaandthereforelargeareaswithalowdoseorsmallareaswithahighdosecanprovideidenticalvaluesofKAP.FormeasurementofKAPanionizationchamberisplacedbeyondtheX-raycollimatorsandmustintercepttheentireradiationfieldforaccuratedosimetricresults.Insteadofmeasurementwithionizationchambers,somemanufacturerscalculateKAPfrommodalityparameters,e.g.tubeoutput.Withthisprocedure,itmustbetakenintoaccountthatamissingorincorrectcalibrationleadstoincorrectKAPvalues.DoseatthePatientEntranceReferencePoint(Ka,r)Ka,risadoseaccumulatedataspecificpointinspacerelativetothefluoroscopicgantryduringaprocedure.TheInternationalElectrotechnicalCommission(IEC)definesapatiententrancereferencepointas15 cmfromtheisocentreofaC-armx-rayunitonthecentralbeamtowardsthefocus(Fig. 1)[9].Ka,rismeasuredinGy.Ka,rissometimesreferredtoasreferencedose,cumulativedose,orcumulativeairkerma.Ka,risonlyaroughestimationofskindoseandnottheequivalenttotheskindose.Thepatiententrancereferencepointmaycorrespondtotheskinlevel,apointwithinthepatient,orapointoutsideofthepatient.Thepatiententrancereferencepointisthusmoreatechnicalcharacteristicoftheequipmentthanoperationalinformationoftheexposureofarealpatient.Inaddition,Ka,rdoesnotincludebeamrepositioning,backscatter,ortheattenuationofthetable.Sincemid-2006,theU.S.FoodandDrugAdministrationrequiresthatallfluoroscopessoldintheU.S.becapableofdisplayingthetotalairkermaattheIRP.EntranceSurfaceDose(ESD)Theentrancesurfacedose orentranceskindose(ESD) isthemeasureoftheradiationdose[mGy]thatisabsorbedbytheskinofapatient.Entranceskindoseincludesbackscatter,shouldinclude(orestimate)theattenuationofthetable[10]andiseitherdirectlymeasurableusingdosimetersorcanbecalculatedusingthemodalityrelateddoseparameters[11,12].HoweverESDisapoorindicatorofradiationriskasitdoesnotaccountfortissuesensitivity,penetrationandexposedfieldsize.SinceESDdoesnotincludetheexposedfieldsize,ESDisabettersurrogateparameterforestimatingtheriskofdeterministicskinreactions,providedthepositionoftheradiationfieldontheskindoesnotchange.PeakSkinDosePSDisdefinedasthehighestdoseatanyportionofapatient’sskinduringaprocedure.PSDincludescontributionsfromboththeprimaryX-raybeamandfromscatteredradiationandismeasuredinGy.ThelevelanddistributionoftheskindoseinFGIcaneitherbemeasuredorcalculated.Inthepast,measurementswereoftencarriedoutwithradiochromicfilms,thedensityofwhichisameasureofthedoseandthedistributionoftheradiationentryfields.Figure 2showsthedosedistributionwithradiochromicfilmofacardiologicalintervention[2].SincetheintroductionoftheDICOMRDSRinangiography,PSDcanalsobecalculatedwithcertainerrors.InadditiontoKAPand/orKa,rallgeometricparametersoftherespectivepositionoftheC-arm,tableandcollimationarerequiredintheRDSRforallradiationevents(fluoroscopyandimage/cineseries)[13].Figure 3showstherelevantgeometricalparameters,KAPandKa,ratthemodalityscreen.AllchangesinthepositionofthetableorC-armarerecordedinindividualRDSRobjectstogetherwiththerespectivecollimationandthecurrentvaluesofKAPandKa,r.Fromthesedata,adosedistributioncanbecalculated,representedgraphicallyandthePSDdetermined.Figure 4showsacoloureddosemapduringacardiologicalprocedure[14].Sinceallgeometricaldataarebasedonparametersofthemodality,largeerrorsorunusableresultsarisewhenthepatient'spositionrelativetothetablechanges.Inthemeantime,DMSfromseveralmanufacturerscancalculatedosemapsandPSDanddisplaythemgraphically.Thisalwayshappensaftertheendofanintervention.ItwouldthereforebeanadvantageifdosemapsandPSDwerecalculatedonlinebythedevicemanufactureranddisplayedliveonamodalityscreenintheinterventionroom.Fig.2Exampleofskindosedistributionincardiologyprocedures(measuredwithslowradiochromicfilm).Theseconventionalfilmshavebeenusedforverificationanddosimetryinradiotherapy.Skindoseduringaconventionalpercutaneouscoronaryinterventionwas0.4 Gy[2]FullsizeimageFig.3DisplayofgeometricalanddoseparametersintheinterventionalroomwithcumulativeKAPandKa,rFullsizeimageFig.4Exampleofapeakskindosemapfromcardiology(DoseTrackingSoftwareDTS,CanonMedicalSystems).ThismaptogetherwithnumericaldoseinformationwasgeneratedbyaDMSaftertheprocedure[14]FullsizeimageOrganDoseTheorgandoseoftissuelocatedintheradiationfieldcanbeestimatedviatheESD.Thisrequiresdepth-dosecurvesintissuefortherespectiveradiationquality.Theattenuationinapatientbymeansofhalf-valuethicknessesofthetissuecanalsobeusedasaroughestimate.Asafirstapproximation,thehalf-valuethicknessof3 cmintissue(water)canbeassumedfortypicalradiationspectrainangiographysystems.Theorgandosealsodependsontheextenttowhichtheorganhasbeenfullyorpartialexposedand,accordingly,onhowthedoseisdistributedintheorgan.OrgandosescanalsobedeterminedusingMonteCarlosoftwareorconversionfactorsfromKAP.Thelattercanalsobeusedtoestimatetheeffectivedose(ED)[15].Thedoseestimationissubjecttomanyuncertainties(metrological,patient-specific).TheuncertaintyfortheKAPisinarangeof25%thatoftheESDcalculatedfromKAPintherangeof50%.Thismeansthatuncertaintiesofover50%mustbeexpectedforindividualorgandoseestimates.BackscatterfactorsdependstronglyonthefieldsizeandthefiltrationandtubevoltageandareincaseofFGIaround1.4(1.3–1.5)forwater[10].EffectiveDoseDifferenttissueshavevaryingdegreesofradiosensitivity.Forexample,breast,bonemarrowandcolonaremuchmoreradiosensitivethanbonesurface,brainandskin.Toaccountforthis,tissueweighingfactorshavebeendeveloped[16,17].Mathematically,EDisthesumoverirradiatedtissuesoftheproductoftheequivalentdoseandthetissueweightingfactorforthosetissues[18].TheunitofEDistheSievert(Sv).Itisimportanttonotethattissueweightingfactorsarebasedonpopulationage-andsex-specificaverages,whichcontributesignificantlytodifferencesinindividualrisk.Thechainbelowshowstherelationshipbetweenabsorbeddose,equivalentdoseandeffectivedose[18].ItshouldbenotedthatEDhasbeenintroducedtoassesstheriskofoccupationalexposure.TheICRPdoesnotrecommendusingEDforriskcalculationsofindividualpatients.DuetotheuncertaintyofallparametersinvolvedinthechainofanEDcalculation,theerroroftheEDestimateforindividualpatientsissignificantlyabove50%.SummaryTheriskofskinradiationinjuries,rarelyoforganinjuries,haslongbeenknownininterventionalradiology.However,calculatingormeasuringpatientdosesandtheirdistributioninorgansoronthesurfaceofthebodyisnotaneasytask.Inthepast,thresholdsweresuggestedforeasilyavailableparameterssuchasKAP,Ka,rorfluoroscopytimeabovewhichdeterministicreactionscanbeexpected[7].Oncethethresholddoseisexceeded,theinjurybecomesprogressivelymoreseverewithincreasingdose,althoughthetrueseverityofmajorinjurieswillonlybecomeapparentweekstomonthsaftertheprocedure.ThesethresholdsarealsocalledSRDL.Steckeretal.suggestedparametersforafirstSRDLnotification[8]:PSD2 Gy,Ka,r3 Gy,KAP300 Gy*cm2,fluoroscopytime30 min.TheNationalCouncilonRadiationProtectionandMeasurements(NCRP)suggestsaSRDLbedefinedataPSDof3 GyoraKa,rof5 Gy[19].Insummary: InterventionalistshouldknowSRDLlevelswithhighriskofskininjuries[20] KAP,Ka,r,fluoroscopytimeandifpossibledosemapsshouldbedisplayedonlineontheinterventionalistsscreen DosemapsandPSDshouldpreferablybedisplayedinrealtimeandnotonlyinDMS TheradiationentrancefieldshouldbechangedfromtimetotimeincomplexinterventionstoavoidoverlappingfieldswithhighPSD DMSisahelpfultooltoanalyseandoptimiseradiationprotectionofpatients Allmeasuredorcalculateddoseparametersshouldbestoredforanalysis AbbreviationsCT: Computedtomography DICOM: DigitalImagingandCommunicationsinMedicine DMS: Dosemanagementsystem DRL: Diagnosticreferencelevel ED: Effectivedose ESD: Entrancesurfacedose EU-BSS: EuropeanBasicSafetyStandards FGI: FluoroscopicallyGuidedIntervention FOV: FieldofView HIS: HospitalInformationSystem ICRP: InternationalCommissiononRadiologicalProtection IEC: InternationalElectrotechnicalCommission, KAP: Kerma-areaproduct Ka,r : Airkermaatthepatiententrancereferencepoint MPE: Medicalphysicsexpert NCRP: NationalCouncilonRadiationProtectionandMeasurements OSL: Opticallystimulatedluminescencedosimeter PACS: Picturearchivingandcommunicationsystem PSD: PeakSkinDose RDSR: RadiationDoseStructuredReport RF: RadioFluoroscopy RIS: RadiologyInformationSystem SRDL: SubstantialRadiationDoseLevel TLD: ThermoluminescentDosimeter XA: X-rayangiography References1.ChaikhA,GauduA,BalossoJ.Monitoringmethodsforskindoseininterventionalradiology.IntJCancerTherOncol.2015;3(1):03011.https://doi.org/10.14319/ijcto.0301.1.Article  GoogleScholar  2.ICRPPublication120(2013)InternationalCommissiononRadiologicalProtection.Radiologicalprotectionincardiology.AnnICRP.42(1):1–1253.SechopoulosI,TrianniA,PeckD.TheDICOMRadiationDoseStructuredReport:WhatItIsandWhatItIsNot.JAmCollRadiol.2015;12(7):712–3.https://doi.org/10.1016/j.jacr.2015.04.002.Article  PubMed  GoogleScholar  4.CouncilDirective2013/59/Euratomof5 December2013layingdownbasicsafetystandardsforprotectionagainstthedangersarisingfromexposuretoionisingradiationandrepealingDirectives89/618/Euratom,90/641/Euratom,96/29/Euratom,97/43/Euratomand2003/122/Euratom.http://data.europa.eu/eli/dir/2013/59/oj(lastaccess06January2021)5.EuropeanSocietyofRadiology(ESR)(2015)SummaryoftheEuropeanDirective2013/59/Euratom:EssentialsforHealthProfessionalsinRadiology.InsightsImaging.6:411–4176.LooseRW,VanoE,MildenbergerP,etal.Radiationdosemanagementsystems–requirementsandrecommendationsforusersfromtheESREuroSafeImaginginitiative.EurRadiol.2020.https://doi.org/10.1007/s00330-020-07290-x.Article  PubMed  PubMedCentral  GoogleScholar  7.PanuccioG,GreenbergR,WunderleK,etal.Comparisonofindirectradiationdoseestimateswithdirectlymeasuredradiationdoseforpatientsandoperatorsduringcomplexendovascularprocedures.JVascSurg.2011;53(4):885–94.https://doi.org/10.1016/j.jvs.2010.10.106.Article  PubMed  GoogleScholar  8.SteckerM,BalterS,TowbinR,etal.GuidelinesforPatientRadiationDoseManagement.JVascIntervRadiol.2009;20:263–73.Article  GoogleScholar  9.InternationalElectrotechnicalCommission.Report60601-2-43:2010Medicalelectricalequipment–part2–43:ParticularrequirementsforthesafetyandessentialperformanceofX-rayequipmentforinterventionalprocedures.Geneva,Switzerland:IEC;2010. GoogleScholar  10.Petoussi-HenssN,ZanklM,DrexlerG,etal.CalculationofbackscatterfactorsfordiagnosticradiologyusingMonteCarlomethods.PhysMedBiol.1998;43:2237–50.CAS  Article  GoogleScholar  11.TsapakiV,TsalafoutasIA,ChinofotiI,etal.Radiationdosestopatientsundergoingstandardradiographicexaminations:acomparisonbetweentwomethods.TheBritishJournalofRadiology.2007;80:107–12.CAS  Article  GoogleScholar  12.SharmaR,SharmaSD,PawarS,etal.RadiationdosetopatientsfromX-rayradiographicexaminationsusingcomputedradiographyimagingsystem.JMedPhys.2015;40(1):29–37.Article  GoogleScholar  13.JonesAK,PasciakAS(2011)Calculatingthepeakskindoseresultingfromfluoroscopicallyguidedinterventions.PartI:Methods.Journalofappliedclinicalmedicalphysics.12(4):231–24414.MalchairF,DabinJ,DeleuM,etal.Reviewofskindosecalculationsoftwareininterventionalcardiology.PhysicaMed.2020;80:75–83.Article  GoogleScholar  15.TapiovaaraM,SiiskonenT.PCXMC:AMonteCarloprogramforcalculatingpatientdosesinmedicalX-rayexaminations(2nded).FinnishCentreforRadiationandNuclearSafety,ReportSTUK-A231.(Helsinki,Finland,2008).https://www.stuk.fi/palvelut/pcxmc-a-monte-carlo-program-for-calculating-patient-doses-in-medical-x-ray-examinations(lastaccess06January2021)16.ICRP,1991.1990RecommendationsoftheInternationalCommissiononRadiologicalProtection.ICRPPublication60.Ann.ICRP21(1–3)17.ICRP,2007.The2007RecommendationsoftheInternationalCommissiononRadiologicalProtection.ICRPPublication103.Ann.ICRP37(2–4)18.ICRPPublication121(2013)Radiologicalprotectioninpaediatricdiagnosticandinterventionalradiology.AnnICRP.42(2):1–63.19.BalterS,RosensteinM,MillerD,etal.Patientradiationdoseauditsforfluoroscopicallyguidedinterventionalprocedures.MedPhys.2011;38(3):1611–8.https://doi.org/10.1118/1.3557868.Article  PubMedCentral  GoogleScholar  20.JaschkeW,BartalG,MartinCJ,VanoE.UnintendedandAccidentalExposures,SignificantDoseEventsandTriggerLevelsinInterventionalRadiology.CardiovascInterventRadiol.2020;43(8):1114–21.https://doi.org/10.1007/s00270-020-02517-2.Article  PubMed  PubMedCentral  GoogleScholar  DownloadreferencesFundingOpenAccessfundingenabledandorganizedbyProjektDEAL.Thispublicationisnotsupportedbyanyfunding.AuthorinformationAffiliationsInstituteofMedicalPhysics,ParacelsusMedicalSchool,HospitalNuremberg,Prof.-Ernst-Nathan-Str.1,90419,Nuremberg,GermanyReinhardLoose & MichaelWuchererAuthorsReinhardLooseViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarMichaelWuchererViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarCorrespondingauthorCorrespondenceto ReinhardLoose.Ethicsdeclarations Conflictofinterest none. AdditionalinformationPublisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Rightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicence,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleLoose,R.,Wucherer,M.HowtoMeasure/CalculateRadiationDoseinPatients?. CardiovascInterventRadiol44,835–841(2021).https://doi.org/10.1007/s00270-021-02772-xDownloadcitationReceived:22October2020Accepted:12January2021Published:03March2021IssueDate:June2021DOI:https://doi.org/10.1007/s00270-021-02772-xSharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative DownloadPDF AssociatedContent Partofacollection: RadiationProtection Advertisement



請為這篇文章評分?