TissueImageAnalytics/TILAb-Score - GitHub

文章推薦指數: 80 %
投票人數:10人

This repository contains the implementation of TILAb-score as described in the original paper. - GitHub - TissueImageAnalytics/TILAb-Score: This repository ... Skiptocontent {{message}} TissueImageAnalytics / TILAb-Score Public Notifications Fork 3 Star 13 ThisrepositorycontainstheimplementationofTILAb-scoreasdescribedintheoriginalpaper. Viewlicense 13 stars 3 forks Star Notifications Code Issues 0 Pullrequests 0 Actions Projects 0 Wiki Security Insights More Code Issues Pullrequests Actions Projects Wiki Security Insights Thiscommitdoesnotbelongtoanybranchonthisrepository,andmaybelongtoaforkoutsideoftherepository. master Branches Tags Couldnotloadbranches Nothingtoshow {{refName}} default Couldnotloadtags Nothingtoshow {{refName}} default 1 branch 0 tags Code Latestcommit   Gitstats 16 commits Files Permalink Failedtoloadlatestcommitinformation. Type Name Latestcommitmessage Committime docs     etc     models     results     src     survival_data     License.md     README.md     Viewcode ANovelDigitalScoreforAbundanceofTumourInfiltratingLymphocytesPredictsDiseaseFreeSurvivalinOralSquamousCellCarcinoma TableofContents Introduction Citation Dataset Training Model Prerequisites Authors License README.md ANovelDigitalScoreforAbundanceofTumourInfiltratingLymphocytesPredictsDiseaseFreeSurvivalinOralSquamousCellCarcinoma TableofContents Introduction Citation Dataset Model Prerequisites License Introduction ThisrepositorycontainstheimplementationofTILAb-scoreasdescribedinthepaper. Citation ThejournalpaperonthisworkhasbeenpublishedinNatureScientificReports.Ifyouusethiscodeinyourresearch,pleasecitethiswork: @article{shaban2019novel, title={AnovelDigitalScoreforAbundanceofTumourInfiltratingLymphocytespredictsDiseasefreeSurvivalinoralSquamouscellcarcinoma}, author={Shaban,MuhammadandKhurram,SyedAliandFraz,MuhammadMoazamandAlsubaie,NajahandMasood,IqraandMushtaq,SajidandHassan,MariamandLoya,AsifandRajpoot,NasirM}, journal={Scientificreports}, volume={9}, number={1}, pages={1--13}, year={2019}, publisher={NaturePublishingGroup} } Dataset Thedatsetfortrainingshouldbeorganizedinfollowinghierarchy: dataset --train --0_Stroma --1_Non_ROI --2_Tumour --3_Lymphocyte --valid --0_Stroma --1_Non_ROI --2_Tumour --3_Lymphocyte PleasecontactProf.NasirRajpoot([email protected])fordatasetrelatedqueries. Training Thetraining.pyfileinsrc/directorywilltrainthemodelusingthedatasetindataset/directory.Youmayneedtotunethehyperparametersfortrainingonyourowndatasettotrainanoptimalmodel. Model Thetrainedmodelusedtoproducetheresultsinthepaperisavailableinthemodels/directory. Prerequisites Followingsoftwarepackageswillberequiredtorunthiscode: --Python3.5 --tensorflow-gpu=1.8.0 --keras=2.1.6 --openslide --opencv_python --scipy --Rpackages --survival --survMisc --gdata --ggplot2 --survminer --rms Authors Seethelistofcontributorswhoparticipatedinthisproject. License ThisprojectislicensedundertheGNUGeneralPublicLicense-seetheLICENSE.mdfilefordetails. About ThisrepositorycontainstheimplementationofTILAb-scoreasdescribedintheoriginalpaper. Resources Readme License Viewlicense Stars 13 stars Watchers 4 watching Forks 3 forks Releases Noreleasespublished Packages0 Nopackagespublished Languages Python 60.3% R 39.7% Youcan’tperformthatactionatthistime. Yousignedinwithanothertaborwindow.Reloadtorefreshyoursession. Yousignedoutinanothertaborwindow.Reloadtorefreshyoursession.



請為這篇文章評分?