Qubit basis states - Quantum Inspire
文章推薦指數: 80 %
Single-qubit computational basis states ... The two orthogonal z-basis states of a qubit are defined as: ... When we talk about the qubit basis states we implicitly ... SelectapageKnowledgebasemenu Introductiontoquantumcomputing ThebasicsofQuantumComputing Whatisaqubit? Superpositionandentanglement Whatisaquantumalgorithm? Helloquantumworld Accounts Quickguide Introductionquickguide Workingwiththeeditor Executingyouralgorithm Displayinganddownloadingyourresults Creatinganewproject Managingyourprojects Managingyouraccount Qubitregister Binaryregister Rotationoperators Advanceduserguide Introductionadvancedguide SoftwareDevelopmentKit Low-levelAPI cQASM:AQuantumProgrammingLanguage cQASM:Qubitgateoperations cQASM:SingleGateMultiple-Qubits cQASM:Qubitinitializationandmeasurement cQASM:Displaycommands LibKet Codeexamples Codeexample:Deutsch-Jozsaalgorithm Codeexample:Quantumfulladder Codeexample:Grover'salgorithm Codeexample:Repetitioncode Codeexample:Quantumclassification Codeexample:SAT Hardwarebackendtopics Hardwarebackends Spin-2:Operationalspecifics Starmon-5:Operationalspecifics Emulatorbackendtopics Emulatorbackends cQASM:Binarycontrolledgates cQASM:Displaycommands cQASM:Errormodels Optimizationofsimulations Resettingqubits cQASMinstructions Qubits Prep_z Prep_y Prep_x Pauli-Xgate Pauli-Ygate Pauli-Zgate Hadamardgate Identitygate RxGate RyGate RzGate 90-degreerotations SGate SdaggerGate TGate TdaggerGate CNOTGate CZGate SwapGate CRgate CRkgate ToffoliGate Measure_z Measure_y Measure_x Measure_all Display Display_binary Binarycontrolledgates Not QubitbasisstatesSingle-qubitcomputationalbasisstatesThetwoorthogonalz-basisstatesofaqubitaredefinedas: ∣0⟩\vert0\rangle∣0⟩ ∣1⟩\vert1\rangle∣1⟩ Whenwetalkaboutthequbitbasisstatesweimplicitlyrefertothez-basisstatesasthecomputationalbasisstates. Thetwoorthogonalx-basisstatesare: ∣+⟩=∣0⟩+∣1⟩2\vert+\rangle=\frac{\vert0\rangle+\vert1\rangle}{\sqrt{2}}∣+⟩=2∣0⟩+∣1⟩ ∣−⟩=∣0⟩−∣1⟩2\vert-\rangle=\frac{\vert0\rangle-\vert1\rangle}{\sqrt{2}}∣−⟩=2∣0⟩−∣1⟩ Thetwoorthogonaly-basisstatesare: ∣R⟩=∣0⟩+ı∣1⟩2\vertR\rangle=\frac{\vert0\rangle+\imath\vert1\rangle}{\sqrt{2}}∣R⟩=2∣0⟩+ı∣1⟩ ∣L⟩=∣0⟩−ı∣1⟩2\vertL\rangle=\frac{\vert0\rangle-\imath\vert1\rangle}{\sqrt{2}}∣L⟩=2∣0⟩−ı∣1⟩ ThebasisstatesarelocatedatoppositepointsontheBlochsphere: Blochspherecourtesyofhttp://www.laborsciencenetwork.com Multi-qubitcomputationalbasisstatesAsingle-qubithastwocomputationalbasisstates.Inthez-basistheseare∣0⟩\vert0\rangle∣0⟩and∣1⟩\vert1\rangle∣1⟩.Atwo-qubitsystemhas4computationalbasisstatesdenotedas∣00⟩\vert00\rangle∣00⟩,∣01⟩\vert01\rangle∣01⟩,∣10⟩\vert10\rangle∣10⟩,∣11⟩\vert11\rangle∣11⟩. Amulti-qubitsystemofNqubitshas2N2^{N}2Ncomputationalbasisstatesdenotedas∣00...00⟩\vert00...00\rangle∣00...00⟩,∣00⋯01⟩\vert00\cdots01\rangle∣00⋯01⟩,∣00⋯10⟩\vert00\cdots10\rangle∣00⋯10⟩...∣11⋯11⟩\vert11\cdots11\rangle∣11⋯11⟩. ProbabilityamplitudesAssociatedwitheachcomputationalbasisstateisaprobabilityamplitudeαi\alpha_{i}αi,whichisacomplexnumber. Asanexample,asystemofthreequbitsisdescribedbytheexpression: ∣Ψ⟩=α0∣000⟩+α1∣001⟩+α2∣010⟩+⋯+α7∣111⟩\lvert\Psi\rangle=\alpha_{0}\lvert000\rangle+\alpha_{1}\lvert001\rangle+\alpha_{2}\lvert010\rangle+\cdots+\alpha_{7}\lvert111\rangle∣Ψ⟩=α0∣000⟩+α1∣001⟩+α2∣010⟩+⋯+α7∣111⟩ whereαi\alpha_{i}αiaretheprobabilityamplitudesassociatedtothecomputationalbasisstates. InitializationandmeasurementbasesBydefault,allqubitsareinitializedinthe∣0⟩|0\rangle∣0⟩stateinthez-basis. StateinitializationinaspecificbasiscanbedoneexplicitlywiththecQASMinstructionsprep_z,prep_yandprep_x,whichpreparequbitsinthe∣0⟩\vert0\rangle∣0⟩,∣R⟩\vertR\rangle∣R⟩and∣+⟩\vert+\rangle∣+⟩statesrespectively. Bydefault,qubitsaremeasuredwiththemeasureormeasure_allinstructioninthez-basis. QubitmeasurementinaspecificbasiscanbedoneexplicitlywiththecQASMinstructionsmeasure_x,measure_yandmeasure_z. Declaredstates Whenaqubitisinthe∣0⟩\vert0\rangle∣0⟩state(∣1⟩\vert1\rangle∣1⟩state),ameasurementinthez-basiswillresultin0(1) Whenaqubitisinthe∣R⟩\vertR\rangle∣R⟩state(∣L⟩\vertL\rangle∣L⟩state),ameasurementinthey-basiswillresultin0(1) Whenaqubitisinthe∣+⟩\vert+\rangle∣+⟩state(∣−⟩\vert-\rangle∣−⟩state),ameasurementinthex-basiswillresultin0(1) Notes∣R⟩\vertR\rangle∣R⟩and∣L⟩\vertL\rangle∣L⟩standforRightandLeft.Othernotationsthatareoftenusedforthesestatesare∣ı⟩\vert\imath\rangle∣ı⟩and∣−ı⟩\vert-\imath\rangle∣−ı⟩.
延伸文章資訊
- 1basis sets
其中,N為歸一化常數,xb、yb、zb分別是原子核到電子的方向向量上x、y、z方向的 ... 內殼層(inner shell)1s:每個原子軌域(AO)以一個基底函數(basis functio...
- 2How to measure in any basis
It turns out that we can do so on a controllable qubit by first applying an operator, and then me...
- 3Z-basis (computational basis) measurement of a qubit yields
Download scientific diagram | Z-basis (computational basis) measurement of a qubit yields |0 or |...
- 4Single Qubit Gates - Qiskit
The Pauli Gates · Digression: The X, Y & Z-Bases · The Hadamard Gate · Digression: Measuring in D...
- 5Quantum logic gate - Wikipedia
Quantum gates are unitary operators, and are described as unitary matrices relative to some basis...