Ordinary Differential Equations (ODE) Calculator - Symbolab
文章推薦指數: 80 %
Free ordinary differential equations (ODE) calculator - solve ordinary differential equations (ODE) step-by-step.
UpgradetoPro
Continuetosite
Thiswebsiteusescookiestoensureyougetthebestexperience.
Byusingthiswebsite,youagreetoourCookiePolicy.Learnmore
Accept
Solutions
Graphing
Practice
New
Geometry
Calculators
Notebook
Groups
CheatSheets
SignIn
Upgrade
Upgrade
AccountDetails
LoginOptions
AccountManagement
Settings
Subscription
Logout
Nonewnotifications
en
English
Español
Português
Français
中文(简体)
TiếngViệt
עברית
العربية
PreAlgebra
OrderofOperations
Factors&Primes
Fractions
LongArithmetic
Decimals
Exponents&Radicals
Ratios&Proportions
Percent
Modulo
Mean,Median&Mode
ScientificNotationArithmetics
Algebra
Equations
Inequalities
SystemofEquations
SystemofInequalities
BasicOperations
AlgebraicProperties
PartialFractions
Polynomials
RationalExpressions
Sequences
PowerSums
Pi(Product)Notation
Induction
LogicalSets
WordProblems
PreCalculus
Equations
Inequalities
SimultaneousEquations
SystemofInequalities
Polynomials
Rationales
ComplexNumbers
Polar/Cartesian
Functions
Arithmetic&Comp.
CoordinateGeometry
PlaneGeometry
SolidGeometry
ConicSections
Trigonometry
Calculus
Derivatives
DerivativeApplications
Limits
Integrals
IntegralApplications
IntegralApproximation
Series
ODE
MultivariableCalculus
LaplaceTransform
Taylor/MaclaurinSeries
FourierSeries
Functions
LineEquations
Functions
Arithmetic&Comp.
ConicSections
Transformation
Matrices&Vectors
Matrices
Vectors
Trigonometry
Identities
ProvingIdentities
TrigEquations
TrigInequalities
EvaluateFunctions
Simplify
Statistics
ArithmeticMean
GeometricMean
QuadraticMean
Median
Mode
Order
Minimum
Maximum
Probability
Mid-Range
Range
StandardDeviation
Variance
LowerQuartile
UpperQuartile
InterquartileRange
Midhinge
StandardNormalDistribution
Physics
Mechanics
Chemistry
ChemicalReactions
ChemicalProperties
Finance
SimpleInterest
CompoundInterest
PresentValue
FutureValue
Economics
PointofDiminishingReturn
Conversions
DecimaltoFraction
FractiontoDecimal
RadianstoDegrees
DegreestoRadians
Hexadecimal
ScientificNotation
Distance
Weight
Time
OrdinaryDifferentialEquations(ODE)Calculator
Solveordinarydifferentialequations(ODE)step-by-step
DerivativesFirstDerivativeWRTNewSpecifyMethodChainRuleProductRuleQuotientRuleSum/DiffRule
SecondDerivativeThirdDerivativeHigherOrderDerivativesDerivativeatapointPartialDerivativeImplicitDerivativeSecondImplicitDerivativeDerivativeusingDefinition
DerivativeApplicationsTangentNormalCurvedLineSlopeExtremePointsTangenttoConicLinearApproximationNew
LimitsOneVariableMultiVariableLimitOneSidedAtInfinitySpecifyMethodNewL'Hopital'sRuleSqueezeTheoremChainRuleFactoringSubstitutionSandwichTheorem
IntegralsIndefiniteIntegralsDefiniteIntegralsSpecific-MethodPartialFractionsU-SubstitutionTrigonometricSubstitutionByPartsLongDivision
ImproperIntegralsAntiderivativesDoubleIntegralsTripleIntegralsMultipleIntegrals
IntegralApplicationsLimitofSumAreaundercurveAreabetweencurvesAreaunderpolarcurveVolumeofsolidofrevolutionArcLengthFunctionAverage
IntegralApproximationNewRiemannSumTrapezoidalSimpson'sRuleMidpointRule
SeriesConvergenceGeometricSeriesTestTelescopingSeriesTestAlternatingSeriesTestPSeriesTestDivergenceTestRatioTestRootTestComparisonTestLimitComparisonTestIntegralTest
AbsoluteConvergencePowerSeriesRadiusofConvergenceNewIntervalofConvergenceNew
ODELinearFirstOrderLinearw/constantcoefficientsNewSeparableBernoulliExactSecondOrderHomogenousNonHomogenousSubstitutionSystemofODEsIVPusingLaplaceNewSeriesSolutionsNewMethodofFrobeniusNew
MultivariableCalculusNewPartialDerivativeImplicitDerivativeTangenttoConicMultiVariableLimitMultipleIntegralsGradientNewDivergenceNewExtremePointsNew
LaplaceTransformTransformInverse
Taylor/MaclaurinSeriesTaylorSeriesMaclaurinSeries
FourierSeries
fullpad»
x^2
x^{\msquare}
\log_{\msquare}
\sqrt{\square}
\nthroot[\msquare]{\square}
\le
\ge
\frac{\msquare}{\msquare}
\cdot
\div
x^{\circ}
\pi
\left(\square\right)^{'}
\frac{d}{dx}
\frac{\partial}{\partialx}
\int
\int_{\msquare}^{\msquare}
\lim
\sum
\infty
\theta
(f\:\circ\:g)
H_{2}O
▭\:\longdivision{▭}
\times\twostack{▭}{▭}
+\twostack{▭}{▭}
-\twostack{▭}{▭}
\left(
\right)
\times
\square\frac{\square}{\square}
\bold{\mathrm{Basic}}
\bold{\alpha\beta\gamma}
\bold{\mathrm{AB\Gamma}}
\bold{\sin\cos}
\bold{\ge\div\rightarrow}
\bold{\overline{x}\space\mathbb{C}\forall}
\bold{\sum\space\int\space\product}
\bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}}
\bold{H_{2}O}
\square^{2}
x^{\square}
\sqrt{\square}
\nthroot[\msquare]{\square}
\frac{\msquare}{\msquare}
\log_{\msquare}
\pi
\theta
\infty
\int
\frac{d}{dx}
\ge
\le
\cdot
\div
x^{\circ}
(\square)
|\square|
(f\:\circ\:g)
f(x)
\ln
e^{\square}
\left(\square\right)^{'}
\frac{\partial}{\partialx}
\int_{\msquare}^{\msquare}
\lim
\sum
\sin
\cos
\tan
\cot
\csc
\sec
\alpha
\beta
\gamma
\delta
\zeta
\eta
\theta
\iota
\kappa
\lambda
\mu
\nu
\xi
\pi
\rho
\sigma
\tau
\upsilon
\phi
\chi
\psi
\omega
A
B
\Gamma
\Delta
E
Z
H
\Theta
K
\Lambda
M
N
\Xi
\Pi
P
\Sigma
T
\Upsilon
\Phi
X
\Psi
\Omega
\sin
\cos
\tan
\cot
\sec
\csc
\sinh
\cosh
\tanh
\coth
\sech
\arcsin
\arccos
\arctan
\arccot
\arcsec
\arccsc
\arcsinh
\arccosh
\arctanh
\arccoth
\arcsech
\begin{cases}\square\\\square\end{cases}
\begin{cases}\square\\\square\\\square\end{cases}
=
\ne
\div
\cdot
\times
<
>
\le
\ge
(\square)
[\square]
▭\:\longdivision{▭}
\times\twostack{▭}{▭}
+\twostack{▭}{▭}
-\twostack{▭}{▭}
\square!
x^{\circ}
\rightarrow
\lfloor\square\rfloor
\lceil\square\rceil
\overline{\square}
\vec{\square}
\in
\forall
\notin
\exist
\mathbb{R}
\mathbb{C}
\mathbb{N}
\mathbb{Z}
\emptyset
\vee
\wedge
\neg
\oplus
\cap
\cup
\square^{c}
\subset
\subsete
\superset
\supersete
\int
\int\int
\int\int\int
\int_{\square}^{\square}
\int_{\square}^{\square}\int_{\square}^{\square}
\int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square}
\sum
\prod
\lim
\lim_{x\to\infty}
\lim_{x\to0+}
\lim_{x\to0-}
\frac{d}{dx}
\frac{d^2}{dx^2}
\left(\square\right)^{'}
\left(\square\right)^{''}
\frac{\partial}{\partialx}
(2\times2)
(2\times3)
(3\times3)
(3\times2)
(4\times2)
(4\times3)
(4\times4)
(3\times4)
(2\times4)
(5\times5)
(1\times2)
(1\times3)
(1\times4)
(1\times5)
(1\times6)
(2\times1)
(3\times1)
(4\times1)
(5\times1)
(6\times1)
(7\times1)
\mathrm{Radians}
\mathrm{Degrees}
\square!
(
)
%
\mathrm{clear}
\arcsin
\sin
\sqrt{\square}
7
8
9
\div
\arccos
\cos
\ln
4
5
6
\times
\arctan
\tan
\log
1
2
3
-
\pi
e
x^{\square}
0
.
\bold{=}
+
MostUsedActions
\mathrm{laplace}
\mathrm{bernoulli}
\mathrm{substitution}
\mathrm{linear}
\mathrm{exact}
SeeAll
area
asymptotes
criticalpoints
derivative
domain
eigenvalues
eigenvectors
expand
extremepoints
factor
implicitderivative
inflectionpoints
intercepts
inverse
laplace
inverselaplace
partialfractions
range
slope
simplify
solvefor
tangent
taylor
vertex
geometrictest
alternatingtest
telescopingtest
pseriestest
roottest
Go
Related»
Graph»
NumberLine»
Similar»
Examples»
Ouronlineexperttutorscananswerthisproblem
Getstep-by-stepsolutionsfromexperttutorsasfastas15-30minutes.
Yourfirst5questionsareonus!
Startyourfreetrial
Inpartnershipwith
YouarebeingredirectedtoCourseHero
IwanttosubmitthesameproblemtoCourseHero
Cancel
Proceed
CorrectAnswer:)
Let'sTryAgain:(
Trytofurthersimplify
Verify
Related
NumberLine
Graph
HidePlot»
Sorry,yourbrowserdoesnotsupportthisapplication
Viewinteractivegraph>
Examples
2y'-y=4\sin(3t)
ty'+2y=t^2-t+1
y'=e^{-y}(2x-4)
\frac{dr}{d\theta}=\frac{r^2}{\theta}
y'+\frac{4}{x}y=x^3y^2
y'+\frac{4}{x}y=x^3y^2,y(2)=-1
laplace\:y^{\prime}+2y=12\sin(2t),y(0)=5
bernoulli\:\frac{dr}{dθ}=\frac{r^2}{θ}
ordinary-differential-equation-calculator
en
image/svg+xml
RelatedSymbolabblogposts
AdvancedMathSolutions–OrdinaryDifferentialEquationsCalculator
延伸文章資訊
- 1Regular Singular Point -- from Wolfram MathWorld
Consider a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0. ... then x=x_0 is ...
- 2How to identify singular points in differential equations
- 3Differential Equations. Step-by-step calculator - MathDF
Calculator Ordinary Differential Equations (ODE) and Systems of ODEs. Calculator applies methods ...
- 4Finding Singular Points - Differential Equations Workbook For ...
Singular points occur when a coefficient in a particular differential equation becomes unbounded....
- 517Calculus Differential Equations - Singular Points
If both of these limits are finite, then is a regular singular point of the differential equation...