17Calculus Differential Equations - Singular Points
文章推薦指數: 80 %
If both of these limits are finite, then is a regular singular point of the differential equation. If one (or both) of these limits is infinite or undefined ... \(\newcommand{\abs}[1]{\left|\,{#1}\,\right|}\) \(\newcommand{\cm}{\mathrm{cm}}\) \(\newcommand{\sec}{\,\mathrm{sec}\,}\) \(\newcommand{\units}[1]{\,\text{#1}}\) \(\newcommand{\vhat}[1]{\,\hat{#1}}\) \(\newcommand{\vhati}{\,\hat{i}}\) \(\newcommand{\vhatj}{\,\hat{j}}\) \(\newcommand{\vhatk}{\,\hat{k}}\) \(\newcommand{\vect}[1]{\boldsymbol{\vec{#1}}}\) \(\newcommand{\norm}[1]{\|{#1}\|}\) \(\newcommand{\arccot}{\,\mathrm{arccot}\,}\) \(\newcommand{\arcsec}{\,\mathrm{arcsec}\,}\) \(\newcommand{\arccsc}{\,\mathrm{arccsc}\,}\) \(\newcommand{\sech}{\,\mathrm{sech}\,}\) \(\newcommand{\csch}{\,\mathrm{csch}\,}\) \(\newcommand{\arcsinh}{\,\mathrm{arcsinh}\,}\) \(\newcommand{\arccosh}{\,\mathrm{arccosh}\,}\) \(\newcommand{\arctanh}{\,\mathrm{arctanh}\,}\) \(\newcommand{\arccoth}{\,\mathrm{arccoth}\,}\) \(\newcommand{\arcsech}{\,\mathrm{arcsech}\,}\) \(\newcommand{\arccsch}{\,\mathrm{arccsch}\,}\) SVC MVC ODE Precalc Search MyAccount LogIn SignUp 17CalculusDifferentialEquations-SingularPoints Menu 17calculus differentialequations singularpoints 17Calculus SingleVariableCalculus Limits IntroductiontoLimitsFormalLimitDefinitionLimitKey EvaluatingLimits FiniteLimitsSolveBySubstitutionSolveByFactoringSolveByRationalizingOne-SidedLimitsInfiniteLimitsTrigLimitsInverseTrigLimits UsingLimits Continuity&DiscontinuitiesLimitsThatDoNotExistIndeterminateFormsPinchingTheoremL'Hôpital'sRuleIntermediateValueTheorem LimitsFAQs Derivatives IntroductiontoDerivativesDerivativeTechniques ConstantRuleConstantMultipleRuleAddition/SubtractionRulePowerRuleProductRuleQuotientRuleChainRuleTrigDerivativesInverseTrigDerivativesImplicitDifferentiationExponentialDerivativesLogarithmDerivativesLogarithmicDifferentiationInverseFunctionDerivativesHyperbolicDerivativesInverseHyperbolicDerivativesHigherOrderDerivativesDerivativeTricks Graphing SlopeandTangentLinesNormalLinesAnalyzingGraphsFirstDerivativeCriticalPointsIncr/DecrIntervalsFirstDerivativeTestSecondDerivativeConcavityInflectionPointsSecondDerivativeTest RelatedRates RelatedRatesRelatedRatesDistancesRelatedRatesAreasRelatedRatesVolumesRelatedRatesCones Optimization OptimizationOptimizingDistancesOptimizingAreasOptimizingVolumes OtherTopics LinearMotionMeanValueTheoremDifferentialsNewton'sMethodFAQs Integrals IntroductiontoIntegralsSigmaNotationDefiniteIntegrals SolvingIntegrals (First)FundamentalTheoremofCalculusSecondFundamentalTheoremofCalculusIntegrationBySubstitutionIntegralSubstitution-ExtraTermsDefiniteIntegralsUsingSubstitutionIntegrationByPartsPartialFractions ImproperIntegrals ImproperIntegralsInfiniteIntervalsEndpointDiscontinuityInternalDiscontinuityMultipleDiscontinuitiesDirectComparisonTestLimitComparisonTest TrigIntegrals TrigIntegrationCalc1TrigIntegrationCalc2WeierstrassSubstitutionInverseTrigSine-CosineIntegrationSineReductionFormulaCosineReductionFormulaSecant-TangentIntegrationTangentReductionFormulaSecantReductionFormulaTrigSubstitutionTangentSubstitutionSineSubstitutionSecantSubstitution Length-Area-Volume AreaUnderCurvesAreaBetweenCurvesArcLengthSurfaceAreaVolumeIntegralsVolumeofRotationWasher-DiscMethodCylinder-ShellMethodVolume-Practice IntegralApplications LinearMotionWorkHooke'sLawWeightChangingMovingFluidExponentialGrowth/Decay IntegrationTools DescribeAreasTrapezoidal&Simpson'sRulesIntegralTricksFAQsCalculus1PracticeCalculus2Practice InfiniteSeries IntroductiontoInfiniteSeriesSequencesBasicProperties SeriesandTests Divergence(nth-Term)Testp-SeriesGeometricSeriesAlternatingSeriesTelescopingSeriesRatioTestLimitComparisonTestDirectComparisonTestIntegralTestRootTestInfiniteSeriesTableWhereToStart-ChoosingATest Convergence Absolute/ConditionalConvergenceConvergenceValueRadius/IntervalofConvergenceRemainder&ErrorBounds UsingSeries PowerSeriesTaylor/MaclaurinSeriesSeriesCalculusFourierSeriesSolveWithPowerSeries InfiniteSeriesTools StudyTechniquesInfiniteSeriesTableIn-DepthPractice100ProblemsInfiniteSeriesExamsInfiniteSeriesExamAInfiniteSeriesExamBInfiniteSeriesExamC Parametrics ParametricEquationsEliminatingTheParameterGraphingParametricCurvesParametricSurfacesParametricDerivativeSlope&TangentLinesAreaArcLengthSurfaceAreaVolume Conics IntroductiontoConicsParabolasEllipsesHyperbolasConicsinPolarForm PolarCoordinates BasicsofPolarCoordinatesConvertingSlope&TangentLinesAreaArcLengthSurfaceAreaConicsinPolarForm Calculus1Practice Calculus1PracticeCalc1FinalExamPracticeCalculus1Exams Calculus2Practice Calculus2PracticeSVCCalculus2Practice100ProblemsIn-DepthPracticeCalculus2Exams Multi-VariableCalculus Multi-VariableCalculusCylindricalCoordinatesSphericalCoordinates Vectors IntroductiontoVectorsUnitVectorsDotProductCrossProduct UsingVectors AngleBetweenVectorsDirectionCosinesandAnglesVectorProjectionsWorkTripleScalarProductTripleVectorProduct VectorApplications Linesin3-SpacePlanesin3-SpaceLinesandPlanesApplicationsNormal&TangentPlanesIntersectionsDistances VectorFunctions BasicsofVectorFunctionsSmoothVectorFunctionsLimitsofVectorFunctionsDerivativesofVectorFunctionsIntegralsofVectorFunctionsProjectileMotionUnitTangentVectorPrincipalUnitNormalVectorAccelerationVectorArcLengthArcLengthFunction/ParameterCurvatureEquationsMVCPracticeExamA1 PartialDerivatives BasicsofPartialDerivativesGradientVectorDirectionalDerivativeExtremaTemperatureGradientNormals&TangentsLagrangeMultipliersMVCPracticeExamA2 PartialIntegrals PartialIntegralsDescribeAreas 2Int-DoubleIntegrals 2IntRectangular2IntNon-Rectangular2IntPlaneArea2IntSurfaceArea2IntVolume2IntPolar 3Int-TripleIntegrals 3IntCartesian3IntCylindrical3IntSpherical MVCPracticeExamA3 VectorFields IntroductiontoVectorFieldsCurlDivergenceLaplacianConservativeVectorFieldsPotentialFunctionsParametricCurvesIntroductionToPath&LineIntegralsPathIntegralsLineIntegralsGreen'sTheoremParametricSurfacesSurfaceIntegralsStokes'TheoremStokes'TheoremProofDivergenceTheoremMVCPracticeExamA4 MVCPracticeExams LaplaceTransforms LaplaceTransformsInverseLaplaceTransformsDerivatives/IntegralsUnitStepFunctionUnitImpulseFunctionSquareWaveConvolution1stShiftingTheorem2ndShiftingTheoremSolveInitialValueProblemsLaplaceTransformsTable DifferentialEquations DifferentialEquations ClassifyingVerifySolutionParticularSolutions 1stOrder SeparationofVariablesFirstOrder,LinearIntegratingFactors,LinearExactEquationsBernoulliEquation1stOrderPractice 2nd/HigherOrder SecondOrder,LinearSubstitutionReductionofOrderUndeterminedCoefficientsVariationofParametersCauchy-EulerEquationChebyshev'sEquationSolveWithPowerSeriesSingularPoints Applications ExponentialGrowth/DecayPopulationDynamicsProjectileMotionFluids,MixingResonanceVibration AdditionalTopics FourierSeriesSlopeFieldsWronskianExistenceandUniquenessBoundaryValueProblemsEuler'sMethodInhomogeneousODE'sLinearSystems DiffEqExamList AdvancedCalculus InterestingCalculusUses InterestingCalcListBaselProblemGammaFunctionGudermannianFunctionInvalidProductFormulaInvalidQuotientRuleLobachevsky'sFormulaNaturalLogIntegral Proofs Proofsp-SeriesProofLimits-sin(x)/xProofStokes'TheoremProof Analysis RealAnalysisComplexAnalysis Precalculus Precalculus Algebra AbsoluteValueSolveAbsValueEquationsSolveAbsValueInequalitiesExponentRulesFactorialBasicsVariableFactorialsIrrationalNumbereOrderofOperationsSubstitutionZeroProductRule Functions Functions BasicsofFunctions Domain/RangePiecewiseFunctionsCompositeFunctionsInverseFunctions Polynomials PolynomialsCompletingTheSquareQuadraticFormulaPolynomialLongDivisionPolynomialFactoringFactorDifferenceofSquaresFactoringCubicPolynomialsZeroesofPolynomialsRootsToPolynomialRationalRootsTestSyntheticDivisionPolynomialComplexRootsBinomialTheorem RationalFunctions RationalFunctionsAsymptotesofRationalFunctionsGraphingRationalFunctionsPartialFractionsLinearPartialFractionsQuadraticPartialFractionsImproperFractionsDifferenceQuotient Logarithms LogarithmsBasicsLogarithms-Domain/RangeLogarithmsLawsLogarithmsGraphsSolveLogarithmsChangeofBase ExponentialsSolveExponentialsHyperbolicFunctionsInverseHyperbolicCeilingandFloorFunctions Graphing GraphingBasicsInterceptsofPolynomialsEquationsofLinesParallelLinesPerpendicularLinesVerticalLineTestGraphSymmetryTransformationsGraphingRationalFunctions Matrices MatricesMatrixMultiplicationIdentityMatricesMatrixDeterminantMatrixInverseSolveLinearSystemswithInverseMatricesCramer'sRule SystemsofEquations SystemsofEquationsSolvebyGraphingSolvebySubstitutionSolvebyEliminationRowReductionSolveLinearSystemswithInverseMatricesCramer'sRuleDependentLinearSystemsNonlinearSystems Trigonometry TrigonometryRightTrianglesUnitCircleTrigIdentitiesPythagoreanTheoremInverseTrigFunctionsSimilarTrianglesTrigSummary ComplexNumbers ComplexNumbersAddingandSubtractingComplexNumbersMultiplyingComplexNumbersRationalizingComplexNumbersEuler'sFormula PrecalculusApplications YouCanSolveWordProblemsExponentialGrowth/DecayHalf-LifeLogisticGrowthNewton'sLawofCoolingCompoundInterestPrepareforCalculus1 Tools CalculusTools CalculusResourcesGraphingPrepareforCalculus1ReadyForCalc2?TrigFormulasDescribeAreasParametricCurvesLinearAlgebraSigmaNotationProofsLogicNotation/SimplifyingCalculusPracticeExams Articles ArticlesList#1StudyConceptTerribleTeacher?PiecewiseFunctions-TheMysteryRevealedYouCanSolveWordProblemsHowToReadMathBooksMusicTakeGoodNotesMemorizeToLearnLearningMath/ScienceLearnerMistakesIsItMATHorMATHS?WhyRadians?DivideByZeroForTeachers LearningTools BookReviewsLearning/StudyTechniquesTutoringCollegeBooksBookListBags/SuppliesMotivationInstructor/Coach AboutContactUs Onthepagewherewediscussedsolvingdifferentialequationsusingpowerseries,weneverreallydiscussedunderwhatconditionsthattechniquecouldbesuccessfullyapplied.Therearelimitations,whichwediscussonthispage. RecommendedBooksonAmazon(affiliatelinks) Complete17CalculusRecommendedBooksList PrimeStudent6-monthTrial SingularPoints Wearegoingtolookatthegeneraldifferentialequation \[ P(x)y''+Q(x)y'+R(x)y=0 \] Noticethatthisishomogeneoussincetherightsideiszero.Also,\(P(x),Q(x)\)and\(R(x)\)arefunctionsof\(x\)only,i.e.therearenotytermsorderivativesofx. Singularpointsoccurwhere\(P(x)=0\).Atthesepoints,the\(y''\)termdisappears,whichwedonotwanttohappen.Also,wewilloftenwritethisas \[ y''+\frac{Q(x)}{P(x)}y'+\frac{R(x)}{P(x)}y=0 \] and,ofcourse,wedonotwantzerointhedenominatorsofthesecondandthirdterms. Sotofindthesingularpoints,itisprobablybesttowritethedifferentialequationinsecondformaboveanddeterminethevaluesofxwherethedenominatorsofeachofthefractionsontheleftarezero. Wealsorequirethatatleastoneof\(Q(x)\)and\(R(x)\)isnotzeroatthesingularpoints.Hereishowwedeterminethis.Let'scall\(x_0\)apointwhere\(P(x_0)=0\).Usingequations,wecalculatethetwolimits \[ \lim_{x-x_0}{(x-x_0)\frac{Q(x)}{P(x)}}~\text{and}~\lim_{x-x_0}{(x-x_0)^2\frac{R(x)}{P(x)}} \] Ifbothoftheselimitsarefinite,then\(x=x_0\)isaregularsingularpointofthedifferentialequation. Ifone(orboth)oftheselimitsisinfiniteorundefined,then\(x=x_0\)isanirregularsingularpoint. AnalyticFunctions Ifthefunctions,\(P(x),Q(x)\)and\(R(x)\)arepolynomials,thenwedon'tneedanyconstraintsotherthantheabovelimitswhencheckingsingularpoints.However,formorecomplicatedfunctions,werequirethatboth \[ (x-x_0)\frac{Q(x)}{P(x)}~\text{and}~(x-x_0)^2\frac{R(x)}{P(x)} \] haveconvergentTaylorSeriesabout\(x_0\).Thetermweusetodescribethistosaythatthetwofunctionsareanalytic. Fortunately,aslongaswehavepolynomials,exponentials,logarithms,sinesorcosines,wearegood.TheyareallanalyticandhaveconvergentTaylorSeries. BookRecommendation Ifyouwantmoredetailonpowerseriessolutionandradiusconvergence,thisbookseemstocoverthematerialinmoredetailthanmostothertextbookswehavelookedat. ReallyUNDERSTANDDifferentialEquations Logintoratethispageandtoseeit'scurrentrating. TopicsYouNeedToUnderstandForThisPage powerseries basicsofdifferentialequations RelatedTopicsandLinks externalsitesyoumayfindhelpful SeriesSolutionstoDifferentialEquations KSU-RegularSingularPoints Tobookmarkthispageandpracticeproblems,logintoyouraccountorsetupafreeaccount. SearchPracticeProblems Doyouhaveapracticeproblemnumberbutdonotknowonwhichpageitisfound?Ifso,enterthenumberbelowandclick'page'togotothepageonwhichitisfoundorclick'practice'tobetakentothepracticeproblem. howtotakegoodnotes TryAudiblePremiumPlusandGetUptoTwoFreeAudiobooks AsanAmazonAssociateIearnfromqualifyingpurchases. IrecentlystartedaPatreonaccounttohelpdefraytheexpensesassociatedwiththissite.Tokeepthissitefree,pleaseconsidersupportingme. Support17CalculusonPatreon PrimeStudent6-monthTrial Practice Search PrimeStudent6-monthTrial DoNOTfollowthislinkoryouwillbebannedfromthesite! Top 17Calculus Weusecookiestoensurethatwegiveyouthebestexperienceonourwebsite.Byusingthissite,youagreetoourWebsitePrivacyPolicy.
延伸文章資訊
- 1Regular Singular Point -- from Wolfram MathWorld
Consider a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0. ... then x=x_0 is ...
- 2Ordinary Differential Equations (ODE) Calculator - Symbolab
Free ordinary differential equations (ODE) calculator - solve ordinary differential equations (OD...
- 3Differential Equation Calculator - eMathHelp
The calculator will try to find the solution of the given ODE: first-order, second-order, nth-ord...
- 4Differential Equations. Step-by-step calculator - MathDF
Calculator Ordinary Differential Equations (ODE) and Systems of ODEs. Calculator applies methods ...
- 5How to identify singular points in differential equations