The footprints of visual attention in the Posner cueing ...
文章推薦指數: 80 %
An important paradigm for studying visual attention in the last two decades has been the Posner cueing paradigm (Posner, 1980). In this paradigm, a target can ... JumpTo... Introduction ClassificationImageSignatures Methods Results Discussion Conclusions Acknowledgments Footnotes AppendixA AppendixB References Free ResearchArticle | January2002 ThefootprintsofvisualattentioninthePosnercueingparadigmrevealedbyclassificationimages MiguelP.Eckstein;StevenS.Shimozaki;CraigK.Abbey AuthorAffiliations MiguelP.Eckstein DepartmentofPsychology,UniversityofCalifornia,SantaBarbara,CA,USAhttp://www.psych.ucsb.edu/~eckstein/lab/[email protected] StevenS.Shimozaki DepartmentofPsychology,UniversityofCalifornia,SantaBarbara,CA,USAhttp://www.psych.ucsb.edu/~eckstein/lab/[email protected] CraigK.Abbey Dept.ofBiomedicalEngineering,UniversityofCalifornia,Davis,CA,USAhttp://www.psych.ucsb.edu/~eckstein/lab/[email protected] JournalofVisionJanuary2002,Vol.2,3.doi:https://doi.org/10.1167/2.1.3 Views FullArticle Figures Tables PDF Share E-mail Facebook Twitter Google Digg Delicious Tumblr StumbleUpon Tools Alerts UserAlerts Youareaddinganalertfor: ThefootprintsofvisualattentioninthePosnercueingparadigmrevealedbyclassificationimages Youwillreceiveanemailwheneverthisarticleiscorrected,updated,orcitedintheliterature.YoucanmanagethisandallotheralertsinMyAccount Thealertwillbesentto: Confirm × Thisfeatureisavailabletoauthenticatedusersonly. SignIn or CreateanAccount × GetCitation Citation MiguelP.Eckstein,StevenS.Shimozaki,CraigK.Abbey;ThefootprintsofvisualattentioninthePosnercueingparadigmrevealedbyclassificationimages.JournalofVision2002;2(1):3.doi:https://doi.org/10.1167/2.1.3. Downloadcitationfile: Ris(Zotero) EndNote BibTex Medlars ProCite RefWorks ReferenceManager ©ARVO(1962-2015);TheAuthors(2016-present) × GetPermissions Supplements AbstractInthePosnercueingparadigm,observers’performanceindetectingatargetistypicallybetterintrialsinwhichthetargetispresentatthecuedlocationthanintrialsinwhichthetargetappearsattheuncuedlocation.ThiseffectcanbeexplainedintermsofaBayesianobserverwherevisualattentionsimplyweightstheinformationdifferentlyatthecued(attended)anduncued(unattended)locationswithoutachangeinthequalityofprocessingateachlocation.Alternatively,itcouldalsobeexplainedintermsofvisualattentionchangingtheshapeoftheperceptualfilteratthecuedlocation.Inthisstudy,weusetheclassificationimagetechniquetocomparethehumanperceptualfiltersatthecuedanduncuedlocationsinacontrastdiscriminationtask.Wedidnotfindstatisticallysignificantdifferencesbetweentheshapesoftheinferredperceptualfiltersacrossthetwolocations,nordidtheobserveddifferencesaccountforthemeasuredcueingeffectsinhumanobservers.Instead,wefoundadifferenceinthemagnitudeoftheclassificationimages,supportingtheideathatvisualattentionchangestheweightingofinformationatthecuedanduncuedlocation,butdoesnotchangethequalityofprocessingateachindividuallocation. Introduction AnimportantparadigmforstudyingvisualattentioninthelasttwodecadeshasbeenthePosnercueingparadigm(Posner,1980).Inthisparadigm,atargetcanappearinoneoftwolocations,andtheobserverreportswhetherthetargetispresent(yes/no).Priortothepresentationofthestimulus,acue(precue)indicatestheprobablelocationofthetarget(giventhatthetargetispresent)withsomevalidity(e.g.,80%ofthetrials).Thosetrialsinwhichthecuecorrectlyindicatesthelocationofthetargetareknownasthevalidcuetrials,whereasthetrialsinwhichthecueincorrectlyindicatesthelocationofthetargetarecalledtheinvalidcuetrials.Aclassicalresultisthatperformance(measuredwithresponsetimesortargetdetectionaccuracy)isbetterinthevalidcuetrialsversustheinvalidcuetrials.ThisresultledPosner(Posner,1980;Posner&Peterson,1990)andmanyresearchersinsubsequentstudiestoconcludethatthecueorientsvisualattention,whichenhancesprocessingatthatcued(attended)location.Ananalogousinterpretationoftheresultisthatvisualattentionhaslimitedresourcesthatcanbeallocatedatoneofthelocations.Whentheresourcesareallocatedatthecuedlocation,aperformancebenefitattheattendedlocationarises. TheBayesianObserver:CueingEffectsWithoutCapacityLimitations/AttentionalEnhancement Recently,analternativeapproachhasbeenproposedforthecueingparadigmintermsofaBayesianobserver.Thismodelpredictsacueingeffectwithoutachangeinthequalityofprocessingattheattendedandunattendedlocations(i.e.,changesintheperceptualfilters,internalnoise,etc.).Inthismodel,theobservermonitorstheresponsesoftwoequivalentperceptualfilters1atthecuedanduncuedlocations.Eachoftheperceptualfilterslinearlyweightstheluminanceatthecuedanduncuedlocationsresultinginonescalarresponseforeachofthelocations.Thescalarresponsestothetwolocationsarestochasticvariablesthatvaryfromtrialtotrialduetointernalnoiseintheobserver(e.g.,neuralfiring)and/ortoluminancevariabilityintheimage(externalnoise). TheBayesianobservercalculatesalikelihoodofthescalarfilterresponsesgiventargetpresenceforeachlocation.Themodelthenoptimallycombinesthetwolikelihoodsacrossthecuedanduncuedlocations.Thelikelihoodfromthecuedlocationisweighted(wc)bythepriorprobabilityofthetargetbeingpresentinthatlocation(precuevalidity).Thelikelihoodfromtheuncuedlocationisweighted(wu)byitscorrespondingpriorprobabilityoftargetpresence(1minusprecuevalidity).Theresultisanoveralllikelihoodofthefilterresponsesgiventargetpresenceacrossthetwolocations.TheBayesianobserverthencalculatesanoveralllikelihoodofthedatagiventargetabsence.Finally,themodelcomputesaratioofthelikelihoodsandmakesadecisionbycomparingthelikelihoodratiotoadecisioncriterionorthreshold.Figure1showsaschematicoftheBayesianobserverforataskinwhichthesignalisaGaussian“contrastincrement”embeddedinwhiteGaussiannoise.summarizesthemathematicalexpressionsdescribingtheBayesianobserverforthePosnerparadigm. Figure1ViewOriginalDownloadSlide SchematicofaBayesianobserverinthePosnercueingparadigm.Stimuliareasimpleschematic(actualexperimentalimagescontainedaddedvisualnoise).Thetaskoftheobserveristodeterminewhetheracontrastincrementispresentatoneofthetwolocations(yes/notask).Inthisstudy,theprecueisvalid80%ofthetime.Figure1 SchematicofaBayesianobserverinthePosnercueingparadigm.Stimuliareasimpleschematic(actualexperimentalimagescontainedaddedvisualnoise).Thetaskoftheobserveristodeterminewhetheracontrastincrementispresentatoneofthetwolocations(yes/notask).Inthisstudy,theprecueisvalid80%ofthetime.ViewOriginalDownloadSlide Theoptimalweightingofthelikelihoodsfromthecuedanduncuedlocationsmaximizestheoverallhitrategivenafalsealarmrateacrossbothtypesofsignaltrials:validandinvalidcuetrials.Theconceptiseasiesttounderstandfortheextremecaseofacuethatis100%valid.Inthiscase,theobserverknowsapriorithathighevidence(likelihood)oftargetpresencearisingfromtheuncuedlocationisdueonlytonoise,andnottotargetpresence(giventhattheuncuedlocationnevercontainsthetarget).Therefore,evidenceoftargetpresencearisingfromtheuncuedlocationsonlycontributestogenerateerrors(falsealarmtrials).Asaresult,fortheparticularcaseofa100%validcue,theoptimalstrategyistocompletelyignoretheinformationfromtheuncuedlocation(wu=0inFigure1).Forthemoregeneralcasewherethecueisvalidacertainpercentofthetime(cuevalidity=80%),theBayesianobserversimplygivesmoreweighttoevidence(orinformation)arisingfromthecuedlocation. AconsequenceofthehigherweightingofinformationatthecuedlocationisthattheBayesianobserverwillproducebetterperformance(hitrategivenaconstantfalsealarmrate)forvalidcuetrialsversusinvalidcuewithoutanydifferenceinthequalityofprocessing(e.g.,differenceinperceptualfilters,internalnoise,etc.)atthecuedanduncuedlocations.Recently,Shimozaki,Eckstein,andAbbey(2001)haveshownhowaBayesianobservercanpredictcuevalidityeffectsofthesameorlargermagnitudethanhumanobserversforaGaussianblobdetectiontaskinoneoftwolocations. Inthisstudy,theBayesianmodelcanalsoquantitativelypredictthecueingeffectinataskwherethetargetisacontrastincrementinoneoftwoGaussianblobs.Theprobabilityoftargetpresenceis50%andthecuevalidityis80%.Figure2showshitrateinthistaskforaBayesianobserverdegradedwithGaussianinternalnoiseinordertomatchapproximatelythefalsealarmratesofthehumanobservers.ThedifferencebetweenthehitrateforthevalidandinvalidcuefortheBayesianobserverisclosetothatoffourhumanobservers. Figure2ViewOriginalDownloadSlide Uppergraph:Hitrateforvalidcueandinvalidcuetrialsforfourhumanobservers(K.F.,A.H.,O.C.,K.C.).AlsoplottedareaBayesianobserver(triangles)thatsimplyoptimallyweightsthelikelihoodfromthecuedanduncuedlocationsandaTuningmodel(circles)inwhichvisualattentionchangesthetuningoftheperceptualfilter.Lowergraph:Falsealarmrateforvalidandinvalidtrialsforthesamefourhumanobserversandthetwomodels.Figure2 Uppergraph:Hitrateforvalidcueandinvalidcuetrialsforfourhumanobservers(K.F.,A.H.,O.C.,K.C.).AlsoplottedareaBayesianobserver(triangles)thatsimplyoptimallyweightsthelikelihoodfromthecuedanduncuedlocationsandaTuningmodel(circles)inwhichvisualattentionchangesthetuningoftheperceptualfilter.Lowergraph:Falsealarmrateforvalidandinvalidtrialsforthesamefourhumanobserversandthetwomodels.ViewOriginalDownloadSlide CueingEffectsWithAttentionalTuningofPerceptualFilters AlthoughtheBayesianobservercansuccessfullypredicthumanobservers’cueingeffects,thereareotherpossiblemodelsthatincludeattentionalchangesintheperceptualqualityoftheinformationateachlocationthatcouldalsopredictthehumancueingeffects.Forexample,somepreviousstudieshavesuggestedthatvisualattentionchangesthetuningorshapeoftheperceptualfilters.Inanotherexample,physiologicalstudieshavesuggestedthatattentionnarrowstheorientationtuningandcolortuningofcellsinV4(HaennyandSchiller,1988;Spitzer,Desimone,&Moran,1988).Also,psychophysicalstudiesusingtexturesegmentation(YeshurunandCarrasco,1998,1999)suggestthatattentionchangesthespatialresolutionofprocessing,whichmighttranslatetoachangeinthespatialfrequencytuningoftheperceptualfilters.LuandDosherhaveusedanextensionofthelinearamplifiermodel(theperceptualtemplatemodel)andexternalnoisewithacueingparadigmtoshowthatinanumberoftasks,attentionincreasestheoptimalityoftheperceptualfilter(Lu&Dosher,2000;Dosher&Lu,2000)2. Figure2showsoneexampleofahypotheticalmodelwherevisualattentionatthecuedlocationimprovesthetuningoftheperceptualfilterproducingacueingeffectofthesamesizeasobservedinhumans.TheparticularshapesofthefiltersusedinthismodelareshowninFigure6(leftcolumn).TheperceptualfilterattheuncuedlocationisaDifferenceofGaussians(DOG)filter,andtheperceptualfilteratthecued(attended)locationisaGaussianthatmatchesthesignal.Thelikelihoodsareequallyweightedfromeachlocationtoreachadecision.IndependentGaussianinternalnoisefollowingtheperceptualfilterswasusedtodegradethemodeltomatchhumanperformancelevels.Forthismodel,thecueingeffectarisessolelybecausevisualattentionchangestheperceptualfilteratthecuedlocationtomakeitoptimal.Thelowerperformanceintheinvalidtrialsisduetothesuboptimalnatureoftheperceptualfilterattheuncuedlocation.Thisexampleillustratesthatamodelwithanattentionalchangeofperceptualfiltersattheattendedandunattendedlocationsalsocanexhibitcueingeffectssimilartothosemeasuredinhumans. Figure6ViewOriginalDownloadSlide Toprow:Perceptualfiltersforthecuedanduncuedlocations.Bottomrow:Classificationimagesobtainedthroughsimulations.Left:PerceptualfilterattheuncuedlocationisasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationisasuboptimalwideGaussian,whereasthatforthecuedlocationisanoptimalGaussian.Figure6 Toprow:Perceptualfiltersforthecuedanduncuedlocations.Bottomrow:Classificationimagesobtainedthroughsimulations.Left:PerceptualfilterattheuncuedlocationisasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationisasuboptimalwideGaussian,whereasthatforthecuedlocationisanoptimalGaussian.ViewOriginalDownloadSlide Tuningversustaskperformance-basedtuningofperceptualfilters Althoughvisionscientistscommonlyrefertotheconceptofperceptualtuning,thetermisinterpretedindifferentways.Manyinvestigatorsusethetermtorefertothenarrowingofthesensitivity(inorientation,space,color,etc.)ofaninferredfilter,ameasuredcell,orapopulationofcells.Anothercommonuseistodefinetheperceptualtuningintermsofhowwellthefiltermatchesthesignaltobedetected.Ourviewisthatchangesintheperceptualfiltersshouldalsobejudgedintermsoftheimpacttheyhaveonperformanceinthetaskbeingstudied.Forexample,therearetasksinwhichattentionmightnarrowthetuningcharacteristicsoftheperceptualfilterbutmightnotenhanceormightevendegradeperformanceinthecuedattendedlocation.Ifso,thosechangesintheperceptualfilterwouldnotbeabletoaccountforastandardcueingeffectinhumanperformance.Inthiscontext,onecandefinethetuningoftheperceptualfilterintermsofperformanceintherelevanttask. Forsimpletasksinexternalnoise,theoptimalfiltersareknownorcomputable.Inthesecases,onecandefinetheperceptualtuningofafilterintermsoftheratioofsignalenergy(toachieveagivenperformancelevel,e.g.,80%)fortheoptimalfilterandthatofthehumanperceptualfilter(Eidealfilter/Ehumanfilter).Thismeasureisknownastheefficiencyoftheperceptualfilter.ForsimplelineartasksinwhiteGaussiannoise,theefficiencycanbedirectlycalculatedbycomputingthesquaredcorrelation(match)betweentheperceptualfilterandtheoptimalfilter(whichisthesignal).However,whentheexternalnoisedoesnothaveequalpowerinallthefrequencies(nonwhitenoise),thenthedegreeofmatchbetweentheperceptualfilterandthesignalisnotthesolefactordeterminingtheperformanceofthefilter.Inthesecases,theoptimalfilterdoesnotmatchthesignal.FortaskssuchasthePosnerparadigmwherethedecisionisanonlinearfunctionofthedata,nosimplecalculationsareavailableandMonteCarlosimulationsand/ornumericalapproximationsarerequiredtocomputethetaskperformanceassociatedtoaperceptualfilter(Nolte&Jaarsma,1967). ClassificationImagesasaTooltoEstimatePerceptualFilters Giventhattwodifferentmodelsofvisualattention(weightingofinformationwithidenticalperceptualfiltersvs.changeinperceptualfilters)canpredictcueingeffectsofthesizeobservedinhumans,thereisarationaletousemoreelaboratepsychophysicaltechniques(beyondcomparingmodelandhumanperformance)tobeabletodistinguishdifferentpossibleattentionalmodulationsthatmediatehumanvisualperformanceinthePosnercueingparadigm.Inthisstudy,weusethetechniqueknownasclassificationimagestodistinguishthetwodifferentmodelsofvisualattention. Whatisaclassificationimage? Theclassificationimagetechniqueallowstheinvestigatortodirectlyestimatehowtheobserverweightstheinformationintheimagetoreachadecision.ArelatedtechniquebasedonmultiplelinearregressionwasfirstappliedbyAhumadaandLovell(1971)toaudition.Ahumada(1996)andBeardandAhumada(1998)usedtheclassificationimagetechniquetostudyhowobserversusedvisualinformationinavernieracuitytask.Ringach,Hawken,andShapley(1997)usedarelatedmethodtostudytheorientationtuninginthemonkeyprimaryvisualcortex.Othershaveusedthetechniquetolookatillusorycontours(Gold,Murray,Bennett,&Sekuler,2000),stereo(Neri,Parker,&Blakemore,1999),andoff-frequencylookinginnonwhitenoise(Abbey&Eckstein,2000) Forsignalsvaryingonlyinluminance,themainmethodologicalrequirementistoaddrandomspatiallyuncorrelatedluminancenoisetotheimage.Theinvestigatorthenkeepstrackofthenoisystimulipresentedinthetrialscorrespondingtothedifferenthumanobserverdecisions:signalpresenttrialsinwhichtheobservercorrectlyresponded“signalpresent”(hittrials),signalpresenttrialsinwhichtheobserverincorrectlyresponded“signalabsent”(incorrectrejectionormisstrials),signalabsenttrialsinwhichtheobservercorrectlyresponded“signalabsent”(correctrejectiontrials),andsignalabsenttrialsinwhichtheobserverincorrectlyresponded“signalpresent”(falsealarmtrials). Theintuitionbehindclassificationimagesisbestillustratedwiththefalsealarmtrials.Inthesetrials,theinvestigatorcollectsnoisesamplesthatdidnotcontainthesignalyetresultedintheobserverrespondingthatthesignalwaspresent.Itfollowsthattherandomluminanceperturbationsinthattrialmusthavecontainedsomeluminancepatternthatcorrespondedtowhattheobservertookasevidenceofsignalpresence.Thus,thesamplemeanofallthenoiseimagesfromthefalsealarmtrialswillrevealdeviationsinluminancethatledtheobservertorespondthatthetargetwaspresentwhenitwasnot.Forsimpletasks,onecanderiveclosedformexpressionstoshowthatthesamplemeanofthenoisyimageswillaccuratelyestimatealinearfilterortemplateusedtoweighttheinformationintheimagetoreachthedecision.Instatistics,onewouldrefertotheclassificationimageobtainedbycomputingthesamplemeanofthenoiseimagesfromfalsealarmtrialsasanunbiasedestimatorofthelineartemplateorperceptualfilter.Ofcourse,forayes/notask,therearefourgroupsofnoisesamplesthatarise,oneforeachofthefourtypesofdecisions(correctdetectionorhit,correctrejection,incorrectdetectionorfalsealarm,andincorrectrejectionormiss).Forsimpletasks,onecanderiveoptimalmethodstocombinethenoisesamplesarisingfromthesefourtypesoftrialstooptimallyestimateclassificationimages(Beard&Ahumada,1998;Abbey&Eckstein,2002,inthisspecialissue).Twoalternativeforcedchoicetasksrequiretakingthedifferencebetweenthetwonoiseimagespresentedineachtrialtocomputetheclassificationimage(seeAbbey&Ecksteininthisissuefordetailson2AFCclassificationimagetechnique).Iftheaddednoisedoesnothaveauniformpowerspectrum,thenamoreinvolvedintermediatestepisrequiredtoobtainanunbiasedestimationofthelinearfilter(Abbey,Eckstein,&Bochud,1999).Formorecomplextasksinwhichdecisionrulesareanonlinearfunctionoftheimagepixels,aderivationthatshowsthattheclassificationimageisanunbiasedestimatoroftheperceptuallinearfilterdoesnotyetexist(A.Ahumada,personalcommunication,1999).However,MonteCarlosimulationscanbeusedtodeterminewhethertheclassificationimagearisingfromthesignalabsenttrialsisanunbiasedestimator. Assumptionsoftheclassificationimagetechnique Anunderlyingassumptionintheclassificationimagetechniqueisthattheobserverismonitoringasingleperceptualfiltertoreachadecision.Itisunderthesecircumstancesthattheobtainedclassificationimagecanbeinterpretedintermsofasingleperceptualfilter.Whentheobserverismonitoringanumberofperceptualfiltersandusesanonlinearcombinationtoreachadecision,cautionisneededintheinterpretation.A.Ahumada(personalcommunication,1999)firstnotedthattheclassificationimagesarisingfromthetargetpresenttrialsintasksinwhichtheobserverismonitoringanumberoffiltersperlocation(e.g.,positionalintrinsicuncertainty)maynotaccuratelyrepresentthelinearperceptualfilterorfiltersinthetask.Forthesetasks,classificationimagesfromsignalpresenttrialscanbemisleading.Inaddition,theclassificationimageobtainedfromsignalabsenttrialscannotbeinterpretedintermsofsingleperceptualfilterbutacompositeofmanyperceptualfiltersinfluencingthedecisioninsomenonlinearfashion.Oneinstanceinwhichhumanobserversmonitormorethanoneperceptualfilterperlocationiswhentheyareuncertainaboutsomeparameteraboutthesignal,suchasposition,spatialfrequency,phase,etc.(Pelli,1985).Thepresenceofeffectsofintrinsicuncertaintycanbediagnosedbymeasuringpsychometricfunctions(accuracyvs.signalcontrast)and/orbycomparingclassificationimagesarisingfromthesignalpresentandsignalabsenttrials(A.Ahumada,personalcommunication,1999).Adifferenceintheclassificationimagesfromsignalpresentandsignalabsenttrialspointstoadiagnosisofnonlinearityinsomecases(AbbeyandEckstein,2002,inthisspecialissue).Agoodapproachistochoosetasksthatareknowntoshowsmalleffectsofintrinsicuncertainty,suchascontrastandsizediscriminationtaskswherealinearobserverisagoodapproximationtohumanperformance(Burgess&Ghandeharian,1984;Ahumada,1987).Itisunderconditionsinwhichintrinsicuncertaintyhasnoeffectthattheclassificationimagetechniqueismostpowerfulintermsofinformationcontent(expressedasthesignaltonoiseratiooftheclassificationimage)andinterpretation.Ontheotherhand,taskssuchasthedetectionofspatialandtemporalperiodicsignalsinnoisetypicallyshownonlinearpsychometricfunctionreflectingintrinsicuncertaintyaboutphaseandwillnotapproximatetheassumptionsoftheclassificationimagetechnique. ClassificationimagesforthePosnerparadigm ForthePosnerparadigm,theBayesianobservernonlinearlycombinestheresponseoftwoperceptualfilterstoreachadecision.Forthisreason,weusedonlythefalsealarmtrialsarisingfromsignalabsenttrialstoderiveclassificationimages.Toverifythattheobtainedclassificationimagesareunbiasedestimatorsofperceptualfilters,weimplementedextensiveMonteCarlosimulationswithdifferentversionsofoptimalandsuboptimalBayesianobservers.ThefollowingsectionshowstheresultsforthesesimulationsandverifiesthevalidityoftheuseofclassificationimagestoestimateperceptualfiltersforthecuedanduncuedlocationsofthePosnerparadigm.ThesimulationsalsoallowustoestablishhowthedifferentmodelsofvisualattentioninthePosnerparadigmgiverisetodistinctclassificationimagesignatures.Thesesignatureswillbeusedtoinferpropertiesaboutvisualattentionfromthehumanclassificationimagesdescribedlater. ClassificationImageSignatures EachofthemodelsshownwasgeneratedbyusingimplementationofthegeneralmodelframeworkshowninFigure1.Thesimulationswerebasedon13,000trials,whichisapproximatelythesamenumberoftrialsperformedbythehumanobservers.Thetaskusedforthemodelsimulationswasidenticaltothatoneusedforthepsychophysicalexperimentsincludingthenoiselevel,Gaussianpedestals,contrastincrementoftheGaussiansignal,andthecuevalidity.Moredetailsaboutthetaskandsimulationsarediscussedin“Methods”and. 1.AttentionChangestheWeightingatCuedandUncuedLocations Thesemodelsassumethatattentiondoesnotchangetheshapeoftheperceptualfilter,butsimplychangestheweightingofinformationatthecuedanduncuedlocations.Weinvestigatedthreetypesofweightingofinformationatthecuedanduncuedlocationscorrespondingtodifferentattentionalsignatures:theoptimalattentionalweighting;attendbothlocationsequally(equivalentweightingofeachlocation);and,attendcuedlocationonly.Thesemodelsareobtainedbychangingtheweightsofthelikelihoods(wcandwu)inourBayesianmodel(seeFigure1and). Figure3showstheperceptualfiltersusedinthesimulations(optimalGaussianfiltersforallconditions),theweightsforthelikelihoodsforthecuedanduncuedlocations,andthecorrespondingclassificationimagesobtained.Thesimulationsshowthattheshapeoftheclassificationimagesmatchtheshapeofthemodelinputperceptuallinearfilterscaledbyaconstant. Figure3ViewOriginalDownloadSlide (a)Toprow:Twoequivalentperceptualfilters(Gaussianfiltersthatmatchthesignal)atthecuedanduncuedlocationsforallthreesimulations.(b)Bottomrow:Theclassificationimagesfromsimulationsassociatedtodifferentweightingsofthelikelihoodatthecuedanduncuedlocation.Inallofthesemodels,visualattentionchangestheweightingsofthelikelihoodfromthecuedanduncuedlocations.Theimagesshownherehavebeenreduced(byafactorof2usingbilinearinterpolation)fromtheactualimages.Figure3 (a)Toprow:Twoequivalentperceptualfilters(Gaussianfiltersthatmatchthesignal)atthecuedanduncuedlocationsforallthreesimulations.(b)Bottomrow:Theclassificationimagesfromsimulationsassociatedtodifferentweightingsofthelikelihoodatthecuedanduncuedlocation.Inallofthesemodels,visualattentionchangestheweightingsofthelikelihoodfromthecuedanduncuedlocations.Theimagesshownherehavebeenreduced(byafactorof2usingbilinearinterpolation)fromtheactualimages.ViewOriginalDownloadSlide Thispointbecomesmoreapparentifradialaveragesacrossanglesareplottedforeachclassificationimage(Figure4).Theradialaveragesoftheclassificationimagesarescaledversionsoftheperceptualfilterusedinthemodelsimulation(aGaussian).Inaddition,theinputweightingofthecuedanduncuedlocationusedinthemodelisreflectedbythemagnitude(oramplitude)oftheclassificationimages.Forexample,whentheweightingsofthetwolocationsinthemodelareequal(attendbothlocationsequally),thenthemagnitudesoftheclassificationimagesarethesame(middlecolumninFigure3;middlegraphinFigure4).Whenthemodelweightsthecuedlocationmoreheavily(andoptimally)thantheuncuedlocation,themagnitudeoftheassociatedclassificationimageforthecuedlocationisalsolargerthanthatoftheuncuedlocation(Figure3leftcolumn;topgraphinFigure4).Finally,whenthemodelsolelyweightstheinformationfromthecuedlocationandignoresthatfromtheuncuedlocation,thennoclassificationimageisobtainedattheuncuedlocation(rightcolumninFigure3;bottomgraphinFigure4).Inthisway,ifweobtainhumanobserverclassificationimages,wecanpotentiallyinfertheobservers’attentionalweightingstrategy. Figure4ViewOriginalDownloadSlide Radialaveragesofclassificationimagesfromsimulationsforthreedifferentattentionalweightingsofthelikelihoodfromthecued(blue)anduncued(red)locations.Solidcurvesarescaledversionsoftheperceptualfilterusedinthesimulations.Top:Optimalweighting.Middle:Attendbothlocationsequally.Bottom:Attendonlycuedlocation.Errorbarsareomittedwhentheyaresmallerthanthesymbol.Figure4 Radialaveragesofclassificationimagesfromsimulationsforthreedifferentattentionalweightingsofthelikelihoodfromthecued(blue)anduncued(red)locations.Solidcurvesarescaledversionsoftheperceptualfilterusedinthesimulations.Top:Optimalweighting.Middle:Attendbothlocationsequally.Bottom:Attendonlycuedlocation.Errorbarsareomittedwhentheyaresmallerthanthesymbol.ViewOriginalDownloadSlide Inferringtheweightingacrosscuedanduncuedlocationsfromtheratioofclassificationimages Althoughtheprevioussectionshowsthattherelationshipbetweenthemagnitudeoftheclassificationimagesforthecuedanduncuedlocationsreflectstheattentionalweightingsassignedtoeachofthetwolocations,itwouldbedesirabletobeabletodirectlyrelatetheratioofthemagnitudeoftheclassificationimagestotheinputmodelweights(wcandwuinFigure1).BecauseofthenonlinearstageintheBayesianobserverinthePosnerparadigm,themathematicalrelationshipbetweentheweightsusedinthemodelforthelikelihoodforeachlocationandtheratioofmagnitudesoftheobtainedclassificationimagesisnoteasilyderivedanalytically.WethereforeperformedextensiveMonteCarlosimulationswiththeBayesianobserverwithtwoGaussianperceptualfilterstoempiricallymeasuretherelationshipbetweenthesetwo.Figure5showstheratioofmagnitudesoftheclassificationimagesandinputweightsusedinthemodel(see“Methods”fortechnicaldetailsaboutfittingroutineused)3.Thisrelationshipcanpotentiallybeusedtoinfertheunderlyingweightsusedbythehumanobserversforthecuedanduncuedlocationsfromtheobtainedhumanclassificationimages. Figure5ViewOriginalDownloadSlide Relationshipbetweentheratioofmagnitudesofclassificationimagesandtheinputweightofthemodelforthecuedlocation.Figure5 Relationshipbetweentheratioofmagnitudesofclassificationimagesandtheinputweightofthemodelforthecuedlocation.ViewOriginalDownloadSlide 2.AttentionChangestheShapeofthePerceptualFilter Thesecondtypeofattentionalsignaturesweconsiderarethoseinwhichvisualattentionchangesthetuningoftheperceptualfilter.WithintheframeworkoftheBayesianmodel,onecanhypothesizethatattendingtothecuedlocationchangesthetuningoftheperceptualfilter.Forexample,Figure6showsasuboptimalDOGfilterusedattheunattendedlocationandanoptimalperceptualfilterusedattheattendedlocation.IncludedinFigure6aretheperceptualfiltersforanotherscenariowherethesuboptimalperceptualfilterattheuncued(unattended)locationiswiderthantheoptimalperceptualfilter.ThecorrespondencebetweentheoriginalfiltersandtheirresultingclassificationimagescanbeseeninFigure6.Figure7showstheFouriertransformoftheperceptualfiltersandtheclassificationimages.Theresultsshowthattheobtainedclassificationimagesforthecuedanduncuedlocationsmatchtheshapeoftheunderlyingperceptualfiltersusedinthemodelsimulations.Forexample,theDOGfiltergivesrisetoanoisyDOGfilterinitsassociatedclassificationimage.Thecorrespondencebetweenthemodel’sperceptualfilterandtheobtainedclassificationimagecanbeseenmoreeasilyintheplotsoftheradialaverages(Figure8).Thesimulationsdemonstratethatonecanpotentiallyinfertheshapeoftheobservers’perceptualfiltersfromtheirclassificationimages. Figure7ViewOriginalDownloadSlide Toprow:Fouriertransformoftheperceptualfiltersforthecuedanduncuedlocations.Bottomrow:ClassificationimagesobtainedthroughMonteCarlosimulations.Radialdistancefromthecenterrepresentsspatialfrequencywiththezerofrequencyatthecenter.Left:PerceptualfilterattheuncuedlocationistheFouriertransformofasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationistheFouriertransformofsuboptimalspatiallywideGaussian(andthereforenarrowerthantheoptimalfilterintheFourierdomain),whereasthatforthecuedlocationisanoptimalGaussian.Figure7 Toprow:Fouriertransformoftheperceptualfiltersforthecuedanduncuedlocations.Bottomrow:ClassificationimagesobtainedthroughMonteCarlosimulations.Radialdistancefromthecenterrepresentsspatialfrequencywiththezerofrequencyatthecenter.Left:PerceptualfilterattheuncuedlocationistheFouriertransformofasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationistheFouriertransformofsuboptimalspatiallywideGaussian(andthereforenarrowerthantheoptimalfilterintheFourierdomain),whereasthatforthecuedlocationisanoptimalGaussian.ViewOriginalDownloadSlide Figure8ViewOriginalDownloadSlide Radialaveragesofclassificationimages(Figures6and7)forsimulationsfortwodifferentexamplesofmodelswherevisualattentionchangestheshapeoftheperceptualfilteratthecuedlocations.Bluesymbolscorrespondtoradialaveragesofclassificationimagesatthecuedlocation,whereastheredsymbolscorrespondtothosefromtheuncuedlocation.Solidlinescorrespondtothescaledradialaveragesoftheperceptualfiltersusedinthemodelsimulations.Leftcolumn:OptimalGaussianfilterforthecuedlocationandaDifferenceofGaussiansfilterfortheuncuedlocation.Rightcolumn:OptimalGaussianfilterforthecuedlocationandaspatiallywidersuboptimalGaussianfortheuncuedlocation.Toprow:Spatialdomain.Bottomrow:Fourierdomain.Figure8 Radialaveragesofclassificationimages(Figures6and7)forsimulationsfortwodifferentexamplesofmodelswherevisualattentionchangestheshapeoftheperceptualfilteratthecuedlocations.Bluesymbolscorrespondtoradialaveragesofclassificationimagesatthecuedlocation,whereastheredsymbolscorrespondtothosefromtheuncuedlocation.Solidlinescorrespondtothescaledradialaveragesoftheperceptualfiltersusedinthemodelsimulations.Leftcolumn:OptimalGaussianfilterforthecuedlocationandaDifferenceofGaussiansfilterfortheuncuedlocation.Rightcolumn:OptimalGaussianfilterforthecuedlocationandaspatiallywidersuboptimalGaussianfortheuncuedlocation.Toprow:Spatialdomain.Bottomrow:Fourierdomain.ViewOriginalDownloadSlide Methods PsychophysicalTask Theobservers’taskwastodecidewhetheracontrastincrement(4.69%)waspresent(yes/no)inoneoftwoGaussianpedestals(percentagerootmeansquare[RMS]contrast=6.25%).ThetwoGaussianpedestalswerelocatedtotherightandleftofafixationpointataneccentricityof2.5degrees.WhiteGaussianluminancenoisewithacontrastof0.117wasaddedtoeachimage.Everyimageineverytrialofthestudyhadindependentsamplesofnoise.Theviewingdistancewas50cm.Thesignalwaspresenton50%ofthetrials.Thevalidityoftheprecuewas80%(i.e.,thetargetwaspresentintheprecuelocationin80%ofthetargetpresenttrials).Fournaïveyettrainedobserversparticipatedinthestudy.Theobserversparticipatedin50sessionsof250trialsresultingin12,500trials.StimuliwerepresentedonanImageSystemsmonochromemonitor(ImageSystemsCorp.,Minnetonka,MN).Eachpixelsubtendedavisualangleof0.03degrees.TherelationshipbetweendigitalgraylevelandluminancewaslinearizedusingaDomeMd2board(ImagingSystems,Waltham,MA)andaluminancecalibrationsystem. Procedure Observersstartedthetrialwithakeypress.Afixationimagewaspresentedfor1s.Observerswereinstructedtofixateacentralcrossatalltimes.Followingasquareprecue(lengthofside=2.5degrees)appearedfor150msaroundoneofthetwopossibletargetlocations.Thestimuluswasthendisplayedfor50ms.Theshortpresentationofprecueplusstimulus(200ms)waschosentoprecludeobserversfromexecutingasaccadiceyemovementtofixatethecuedlocation.AwhitenoisemaskwithhigherRMScontrastwasthenpresentedfor100ms(samemeanbackgroundluminance24.8cd/m2).Theobserversthenpressedoneoftwokeysonacomputerkeyboardtoselecttheirdecision(signalpresentorsignalabsent).Feedbackaboutthecorrectdecisionwasprovided,butnofeedbackaboutthesignallocationwasgiven. HumanandModelPerformance Performanceforhumanobserverswasmeasuredintermsoftheproportionofsignalpresenttrialsinwhichtheobservercorrectlyresponded(hitrate).Hitratewasmeasuredseparatelyforthevalidcuetrialsandtheinvalidcuetrials.Inaddition,wedeterminedtheproportionofsignalabsenttrialsinwhichtheobserverincorrectlyresponded“signalpresent”(falsealarmrate).Performanceforthemodelswasquantifiedusingthesamemeasures. ClassificationImages Classificationimageswereobtainedbycomputingthesamplemeanofthenoiseimagespresentedinthesignalabsenttrialsinwhichthehumanand/ormodelobserverincorrectlyresponded“signalpresent”(falsealarmtrials).Thenumberofimagesusedtocomputetheclassificationimageswasgivenbythenumberofsignalabsenttrials×falsealarmrate.Theactualnumberofimagesdependedonthefalsealarmrateofeachindividualobserverbutwasapproximately1,625(6,250×0.26).Radialaveragesacrossallangleswerecomputedforeachofthenoiseimages.Asamplemean,astandarddeviationforeachelementoftheradialaverages,wascomputed,aswellasthesamplecovariancebetweeneachelement. StatisticalInferenceforClassificationImages Althoughclassificationimagescanshowtheshapeoftheunderlyingperceptualfilter,theimagesandradialaveragescontainalargeamountofnoise(statisticaluncertainty).Tomakemeaningfulinterpretations,statisticaltechniquesareneededtotestthedifferenthypotheses.TheHotellingT2statisticisageneralizationoftheunivariatetstatistictomultivariatevectors,andcanbeusedtotestfordifferencesbetweenasamplemultivariatevectorandapopulationvectororbetweentwo-samplemultivariatevectors.Weusedone-sampleandtwo-sampleHotellingT2statistics(Harris,1985)todohypothesistestingoftheradialaveragesoftheclassificationimages.TheHotellingT2statisticis wherexisavectorcontainingtheobservedradialaverageoftheclassificationimage,andx0iseitherapopulationorahypothesizedradialaverageclassificationimage.K−1istheinverseofthecovariancematrixthatcontainsthesamplevarianceofeachoftheelementsoftheradialaverageclassificationimages,andthesamplecovariancebetweenthem.Totestforsignificance,theT2statisticcanbetransformedtoanFstatisticusingthefollowingrelationship: wherepisthenumberofdependentvariables(numberofvectorelementsintheradialaverageoftheclassificationimages),andNisthenumberofobservations(numberoffalsealarmtrialsforourcase).TheobtainedFstatisticcanbecomparedtoanFcriticalwithpdegreesoffreedomforthenumeratorandN-pdegreesoffreedomforthedenominator. Tocomparetwo-sampleclassificationimages,onecanusetheindependenttwo-sampleT2,whichisgivenbythefollowingexpression: wherex1andx2arevectorscontainingtheobservedradialaveragesofthetwoclassificationimages;N1andN2refertothenumberofobservationsforthetwoclassificationimages.Forthetwo-sampletest,apooledcovarianceKiscomputedcombiningthesumofsquaredeviationsandsumofsquaredproductsfrombothsamples.Totestforsignificance,thetwo-sampleT2statisticcanbetransformedtoanFstatisticusingthefollowingrelationship: wherep,N1,andN2aredefinedbefore.TheobtainedFstatisticcanbecomparedtoanFcriticalwithpdegreesoffreedomforthenumeratorandN1+N2−p−1degreesoffreedomforthedenominator. Results HumanPerformanceforValidCueandInvalidCueConditions Table1showsthehitratesforvalidcueandinvalidcuetrials,aswellasthefalsealarmrateforthefourhumanobservers.Thelastcolumnshowsthesizeofthecueingeffectcomputedasthedifferenceofhitratesforthetwotypesofcuetrials.Forallobservers,wefoundastatisticallysignificantcueingeffect(p<.001 table1 andinvalidcuetrialsandfalsealarmratesforhumanobserversinthecontrast discriminationposnertask.table1 discriminationposnertask.observerhitrate humanclassificationimages figure9showstheclassificationimagesforfourhumanobserversobtainedfromthefalsealarmtrialsforthecuedand uncuedlocations.figure10showsthefouriertransformoftheclassificationimages.overall figure9vieworiginaldownloadslide figure10vieworiginaldownloadslide radialaverages radialaveragesacrossallanglesforeachnoiseimagefromeachfalsealarmtrialwerecomputed.samplemeanradialav erageswerethencalculatedforcuedanduncuedlocations figure11vieworiginaldownloadslide figure12vieworiginaldownloadslide radialaveragesofclassificationimageswerefitwithdogfunctionswithfourfittingparameters:oneamplitudefor eachofthetwogaussians p table2 fordifferenceofgaussianstoradialaveragesofhumanclassificationimages withfourfittingparameters.goodnessoffitandestimatedweightsarealso given.table2 given.observerperceptualfilteratthecuedlocationperceptualfilterattheuncuedlocationk1k2 scaledperceptualfilterstocomparetheshapeofthefilters tocomparetheshapeoftheperceptualfilters figure13showsthescaledperceptualfilterattheuncuedlocationtogivethebestfittotheunscaledperceptualfilt eratthecuedlocationforallfourobservers.errorbarsforobserversa.h.andk.f.arelargerduetothefactthatthem agnitudesoftheclassificationimagesfromtheuncuedlocationwerelower>.01).4 Figure13ViewOriginalDownloadSlide Radialaverages(spatialdomain)oftheuncuedlocationscaled(minimizingtheweightederror)tomatchtheradialaverageoftheclassificationimageforthecuedlocation.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.Figure13 Radialaverages(spatialdomain)oftheuncuedlocationscaled(minimizingtheweightederror)tomatchtheradialaverageoftheclassificationimageforthecuedlocation.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.ViewOriginalDownloadSlide PerformanceoftheHumanClassificationImages Althoughwedidnotfindstatisticallysignificantdifferencesacrosstheshapesoftheinferredperceptualfiltersatthecuedanduncuedlocations,weevaluatedthecueingeffectthatwouldarisefromtheobserveddifferencesinshapeofthehumanperceptualfilters.Todoso,weusedthebest-fitDOGforeachobserverforthecuedanduncuedlocationsandperformedcomputersimulationsintheframeworkofourBayesianmodelframework(Figure1).Toisolatecueingeffectsarisingfromthedifferenceinshapeofthefiltersfromdifferentialweightingofthecuedanduncuedlocations,thesimulationsincludedequalweightingofthelikelihoodateachlocation.Table3showstheobtainedhitratesandfalsealarmratesforthebest-fitDOGforeachobserverTable4showssimulationresultsforthebest-fitDOGforeachobserverforthecasewhereinternalnoise(independentadditiveGaussiannoiseaddedtotheoutputofeachfilter)wasaddedtomatchperformanceofthehumanobservers.Bothsimulationresultsshowthatthecueingeffectsthatarisefromtheobserveddifferencesintheshapeoftheperceptualfiltersareeithertoosmall(<0.02forK.C.andO.C.)orinthewrongdirection(A.H.andK.F.)toexplaintheobservedcueingeffectsinhumanobservers(Table1).Figure14plotsthecueingeffects(hitrateforvalidcuetrialsminushitrateforinvalidcuetrials)measuredforthehumanobserversandthosepredictedfromthedifferencesbetweentheinferredperceptualfiltersforthecuedanduncuedlocations. Figure14ViewOriginalDownloadSlide Cueingeffect(hitrateforvalidtrialsminushitrateforinvalidtrials)measuredinhumanobservers(redsymbols).Greensymbolscorrespondtothecueingeffectpredictedbythedifferencesintheinferredperceptualfiltersfromthehumanclassificationimages.Figure14 Cueingeffect(hitrateforvalidtrialsminushitrateforinvalidtrials)measuredinhumanobservers(redsymbols).Greensymbolscorrespondtothecueingeffectpredictedbythedifferencesintheinferredperceptualfiltersfromthehumanclassificationimages.ViewOriginalDownloadSlide Table3 ViewTable Performanceofthebest-fitDifferenceofGaussianswithequalweightingofthe likelihoodofthecuedanduncuedlocations.Table3 Performanceofthebest-fitDifferenceofGaussianswithequalweightingofthe likelihoodofthecuedanduncuedlocations.ObserverEqualweightingHitrate(validtrials)Hitrate(invalidtrials)Falsealarmrate(alltrials)Cueingeffect(HRv–HRiv)O.C.0.9390.9190.0530.02K.F.0.9230.9430.059−0.02K.C.0.9300.9290.0710.001A.H.0.9300.9690.050−0.039 Table4 ViewTable Performanceofthe best-fitDifferenceofGaussianswithequalweightingofthecuedanduncued locations.Fortheseresults,internalnoisewasinjectedtomatchthehuman performancelevels.Table4 Performanceofthe best-fitDifferenceofGaussianswithequalweightingofthecuedanduncued locations.Fortheseresults,internalnoisewasinjectedtomatchthehuman performancelevels.ObserverEqualweightingHitRate(validtrials)HitRate(invalidtrials)Falsealarmrate(alltrials)Cueingeffect(HRv–HRiv)O.C.0.8190.7990.2310.02K.F.0.8210.8240.233−0.03K.C.0.8920.8830.2640.009A.H.0.8800.9240.229−0.043 InferringtheUnderlyingWeightsUsedbytheObserversFromtheRatioofMagnitudesoftheClassificationImages Thescalarusedtobestfittheuncuedhumanclassificationimagetothecuedhumanclassificationimagewastakenastheratioofthemagnitudesoftheclassificationimagesforthecuedanduncuedlocations.WethenusedcomputersimulationswiththeBayesianmodelvaryingtheinputweightsofthemodeltogeneratealookuptablebetweenweights(wcandwuinFigure1)andtheratioofthemagnitudeoftheclassificationimagesobtainedforthemodel(e.g.,Figure5).Fromthislookuptablewecouldtheninfertheweightsusedbytheobserversfromtheratioofthemagnitudeofthehumanclassificationimages.ThesimulationsfortheBayesianmodelwereperformedbyinjectinginternalnoiseandadjustingthecriterioninordertomatchthefalsealarmratesobservedinhumans.Theprocedurewasdoneseparatelyforeachhumanobserver.Theweightsinferredforthecuedlocationwere:0.76(O.C.),0.84(K.F.),0.8(K.C.),and0.88(A.H.). Discussion HumanVersusOptimalPerceptualFilters Forthespecialcaseinwhichtheexternalnoiseisspatiallyuncorrelated(white)Gaussiannoise,theperceptualfiltersoftheidealBayesianobservermatchthesignal.Comparisonofthehumanclassificationimagestotheoptimalperceptualfilter(Figure3vs.Figure9)showsthatforallobserversthehumanperceptualfilterstendtobenarrowerinthespatialdomainthantheoptimalGaussianfilter,andalsohaveaninhibitorysurround.ThesurroundcanbeseenmoreclearlyintheradialaveragesinFigure11andcorrespondstoalowspatialfrequencysuppression.Thelowersensitivitytolowspatialfrequenciescanbeseenasadark“hole”intheFouriertransformationsoftheclassificationimages(Figure10).Thelow-frequencysuppressioncanalsobeseenasthedecreasedmagnitudeoftheradialaverageoftheFouriertransformationsoftheclassificationimages(Figure12).TheFouriertransformationoftheidealperceptualfiltercorrespondstoaGaussianthatismorecompactthanthehumanperceptualfilterinthefrequencydomain(andmoreextensiveinthespatialdomain;seeFigures11and12).TheinabilityofhumanobserverstomatchtheoptimalprofilewhenthesignalisaGaussianhasbeenobservedbeforebyAbbeyetal.(1999)forthedetectionofaGaussiansignal.Thelowfrequencysuppressionmightbeexplainedinpartbythedecreasedcontrastsensitivityofthehumanvisualsystemtolowfrequencies(i.e.,thecontrastsensitivityfunction). ShapeofHumanPerceptualFiltersattheAttendedandUnattendedLocations Acommonexplanationforthecueingeffectisthatvisualattentionenhancesthequalityofprocessingattheattendedlocation.Onepossiblemechanismsuggestedbypreviousstudiesisthatattentionchangesthetuningoftheperceptualfilterattheattendedlocation(e.g.,Yeshurun&Carrasco,1999;Dosher&Lu,2000a,2000b)sothatitmatchesthesignalmoreoptimally.Ifso,theclassificationimagetechniqueshouldrevealadifferenceintheshapeoftheperceptualfiltersatthecuedanduncuedlocations(seeFigures6,7,and8forexamplesofpossibleclassificationimagesignaturesforthisscenario).Ourresultsdidnotfindstatisticalsignificancebetweentheshapeoftheperceptualfiltersatthecued(attended)anduncued(unattended)locationsforallfourobservers.Yetstatisticalsignificanceshouldnotbetheonlycriteriontojudgethedifferencesacrossperceptualfilters.Itisplausiblethatifthenumberoftrialswereincreasedbyafactorof10,thedifferencesinshapesacrossperceptualfilterswouldbecomestatisticallysignificant.Anotherimportantcriterionistodeterminehowmuchofacueingeffectwouldbeproducedbytheobserveddifferencesintheinferredshapeoftheperceptualfilters.MonteCarlosimulationsusingthebest-fitDOG(Table2)totheobservers’perceptualfiltersandequalweightingofinformationofbothlocationsresultedincueingeffectsrangingfrom−4%to+2%.TheperceptualfiltersforobserverA.H.resultedinahigherperformanceattheuncuedlocation(−4%negativecueingeffect).Thisresultisconsistentwithherclassificationimages(seeFigures9,10,and11)wheretheperceptualfilterattheunattendedlocationdidnothavethelow-frequencysuppression,and,therefore,bettermatchedtheoptimalfilterthantheperceptualfilterattheattendedlocation.Overall,thesefindingssuggestthatevenifthedifferencesinshapesacrosstheperceptualfilterswereassumedtobestatisticallysignificant,thesedifferencesbythemselveswouldnotbeabletoaccountforthelargecueingeffectsmeasuredonhumanobservers,whichareintheorderof10%to23%.Wethereforeconcludethatforthepresenttask,visualattentiondoesnotchangethetuningoftheperceptualfilteratthecuedlocationsufficientlytoaccountforthehumanobservercueingeffects. VisualAttentionChangestheWeightingofInformationattheCuedandUncuedLocations Anotherexplanationofthecueingeffectisintermsofadifferentialweightingofinformationattheattendedandunattendedlocationswithoutresortingtoadifferentqualityofprocessingateachlocation.Kinchla,Chen,andEvert(1995)usedamodelthatlinearlyweightsinformationacrossbothlocationstofittohumandata.Shimozakietal.(2001)andthisstudyusedanoptimalBayesianobserverwithidenticalperceptualfiltersatbothlocationstopredictthehumancueingeffect.Thismodelpredictsthattheclassificationimagesforthecuedanduncuedlocationshoulddifferinmagnitudebutnotshape(Figures3and4).Wefoundthatthehumanclassificationfollowedthispattern(Figures10and12).Theseresultssupporttheideathatvisualattentiondoeschangetheweightingofinformationatthecuedanduncuedlocation. Inaddition,weusedsimulationstoinfertheunderlyingweightingofinformationateachlocation(cuedanduncued)usedbythehumanobserversfromtheratiobetweenthemagnitudesofthehumanclassificationimages.Weobtainedarangeofweights(0.88,0.85,0.8,and0.76)thatwerescatteredaroundtheoptimalweighting(0.8).Notethattherankorderoftheweightsfortheobserversisinagreementwiththesizeoftheirobservedcueingeffect,aswewouldexpectfromthemodeldescribedinFigure1.Thehighertheweightassignedtothecuedlocation,thelargerthecueingeffect.Insummary,theclassificationimagessupporttheideathatvisualattentionactstomoreheavilyweighttheinformationatthecuedlocation. AttentionalWeightingVersusAttentionalSwitching Analternativemodelthatisconsistentwithadifferenceinmagnitudesfortheclassificationimagesisoneinwhichtheobservermonitors(attends)onelocationpertrialandswitchesacrosstrialsbyattendingeitherthecuedlocationortheuncuedlocationwithsomeprobability.Werefertothismodelastheattentionalswitchingmodel.Acommonassumptionisthattheattentionalswitchingisdeterminedbythepriorprobabilitiesofsignalpresence.Therefore,forourtask,themodelattendsthecuedlocationon80%ofthetrialsandtheuncuedlocationon20%ofthetrials.Thismodelwillalsoyieldclassificationimageswithahighermagnitudeatthecuedlocationthantheuncuedlocation.However,themodelpredicts(see)cueingeffects(oftheorderof0.445),whicharesignificantlylargerthanthosemeasuredforhumanobserversandtheattentionalweightingmodel(Table2).Therefore,theattentionalswitchingmodel(asmanyotherlimitedcapacityattentionalmodels)canberejectedbecauseitpredictslargercueingeffectsthanthosepresentinhumanobservers.Nevertheless,thefactthattheattentionalswitchingmodelgeneratesclassificationimagesignaturesthataresimilartothoseoftheattentionalweightingmodelemphasizestheimportanceofconsideringboth—classificationimagesandtaskperformance—whenevaluatingmodels. VisualAttention:SelectionandCombinationofInformation Overall,ourresultssupporttheideathatforthesimpletaskstudied,thecueingeffectisduetothedifferentialweightingofinformationatthecuedanduncuedlocation,andnotduetoachangeintheshapeoftheperceptualfiltersattheattendedandunattendedlocations.Theconceptthatvisualattentionallowstheobservertoselectand/ordifferentiallyweightinformationfromdifferentsourceshasbeenproposedbeforeforthecueingparadigm(Kinchlaetal.,1995).Shaw(1982),Palmer(1995),andothers(Sperling&Dosher,1986;Palmer,Verghese,&Pavel,2000;Verghese&Stone,1995;Eckstein,1998;Eckstein,Thomas,Palmer,&Shimozaki,2000;Verghese,2001)havealsoshownthathumanperformanceinsimplevisualsearchtaskscanbeaccountedforintermsofvisualattentionasaselectionmechanismandwithoutresortingtoachangeinthequalityofprocessing.Thesemodelshavebeensuccessfulinpredictingmanyeffectsinvisualsearchincludingset-sizeeffects,distractorvariability,searchasymmetries,andthefeature/conjunctionsearchdichotomy(seePalmeretal.,2000,forareview) However,morecomplextasks(Poder,1999)orthoseinvolvingmemorystudieshaveshownthatattendingtoalocationwillnotsimplyallowtheobservertoselectrelevantinformationandignoreirrelevantinformation,butinsteadwillimprovethequalityofprocessingattheattendedlocationduetocapacitylimitations.Inaddition,thepresentresultscannotexplaincueingeffectsobtainedinparadigmsinwhicha100%validpostcue(whichcanbelocalizedbytheobserver)waspresentedinadditiontothepre-orsimultaneouscue(Luck,Hillyard,Mouloua,&Hawkins,1996;DosherandLu,2000a,2000b;LuandDosher,2000)andintasksinwhichanoninformativeprecuewaspresented(Henderson,1991). AHypotheticalExperimentWhereAttentionWouldChangetheShapeofthePerceptualFiltersWithoutReflectingLimitedResources Itshouldbenotedthat,intheory,experimentscouldbedesignedsothatattentionhasaneffectontheshapeoftheperceptualfilterusedbythehumanobserver.Forexample,onesuchtaskmightbeadetectiontaskwherethesignalisahigh-frequencywindowedsinewavethatmightappearatoneoftwolocations.Letussupposethattheprecueisahigh-contrastcopyofthesignal,appearsdirectlybelowtheprobablesignallocation,andisinphasewiththesignal(whenthesignalispresent).Itiswidelyknownthathumanobservershaveintrinsicuncertainty(Pelli,1985)aboutthespatialphaseofperiodicsignals(Burgess&Ghanderharian,1984).Inthiscase,theprecuewouldprovidenotonlyinformationabouttheprobablesignallocation(rightvs.leftlocation),butalsoinformationabouttheexactphaseand/orpositionofthesignal.Therefore,forthisexample,onemightobtainaclassificationimagefortheuncuedlocationthatisnotphase-coherentbecausetheobserverhasintrinsicuncertaintyaboutthephaseofthesignal,andthereforemonitorsmanylocations.Ontheotherhand,fortheattendedlocation,thehighcontrastcuewouldprovidetheobserverwithinformationabouttheexactphaseorpositionofthesignal.Inthiscase,theobserverwouldmonitorasingleperceptualfilterwiththephaseorpositionmatchingthatofthereference.Asaresult,onewouldobtainaphase-coherentclassificationimageforthecued/attendedlocation.Infact,onecouldbuildaBayesianmodelwithintrinsicphaseuncertaintythatwouldpredictthechangeinperceptualfilters. Thisexamplesimplyillustratesthatonemightfindtasksinwhichtheattendedlocationchangestheshapeoftheperceptualfilterattheattendedlocation.However,itshouldbeclearthatinthisexamplethecuenotonlygivesinformationaboutwhichofthetwolocations(rightimagevs.leftimage)hasahigherprobabilityofcontainingthetargetbutalsoprovidesinformationaboutthespecificphaseorpositionofthetargetwithinthecuedlocation.Therefore,thecuealsoallowstheobservertoselectoneofmanyfiltersdifferingslightlyinlocationshe/sheisuncertainaboutwithintherightorleftimage.Therefore,theobservedchangeintheperceptualfilterwouldnotbeassociatedwithacapacitylimitationinvisualattention,butinsteadthecueprovidesmore/furtherinformationfortheobservertoselectwhatisrelevantandignorewhatisirrelevant. ClassificationImagesVersusOtherMethodstoInferPropertiesAboutPerceptualFilters Variationofenergythresholdswithexternalnoise Acommonlyusedmethodtoinfertheabilityofaperceptualfiltertomatchtheoptimalfilteristovarytheexternalnoiseandmeasurethesignalenergyrequiredbyahumanobservertodetectthesignalatagivenperformancelevel.Fromtheslopeofthevariationofenergywithexternalnoise(i.e.,noisespectraldensity),onecaninferwhatisknownasthesamplingefficiencyoftheperceptualfilter(Burgessetal.,1981;Pelli,1985).Thesamplingefficiencyisaquantitativemeasure(squaredcorrelation)ofthematchbetweenthehumanperceptualfilterandtheoptimalfilter.Aswiththeclassificationimagetechnique,typicallythereisanunderlyingassumptionthattheobserveriseffectivelymonitoringasinglefiltertoreachthedecision.Iftheobserverismonitoringmorethanonefilter(e.g.,thesamefilterbutatdifferentpositions;i.e.,spatialuncertainty)andcombiningtheresponsesofthefilternonlinearlyorwhenthefilterresponsegoesthroughatransducernonlinearity,thenamorecomplexanalysisisrequiredtoobtainthesamplingefficiency(Eckstein,Ahumada,&Watson,1997;Lu&Dosher,1999).Althoughthesamplingefficiencyisaveryusefulmeasure,ithasthelimitationthatitdoesnotprovideinformationabouttheshapeoftheperceptualfilter.Infact,perceptualfilterswithavarietyofdifferentshapescanhaveidenticalsamplingefficiencies.Inthisrespect,thesamplingefficiencyestimationtechniquecouldbecombinedwiththeclassificationimagetechniquetoprovidetheinvestigatorwithinformationabouttheshapeoftheperceptualfilter. Bandpassnoise-maskingexperiments Anothermethodthathasbeenusedtoinfertheunderlyingtuningofthespatialfrequencyororientationoftheperceptualfiltershasbeenthebandpassnoise-maskingparadigm.Inthisparadigm,thefrequencycontentofthenoiseissystematicallyvariedsothatthenoisecontainspowerindifferentfrequencybandsineachparticularcondition.Theinvestigatorthenmeasurestheenergythresholdtodetectthesignalasafunctionforthedifferentnoisefrequencybands.Fromtheeffectofthedifferentnoisefrequencybandsonhumanobservers’thresholdelevation,theinvestigatorinfersthesensitivitytoagivenspatialfrequencyoftheperceptualfilterusedtoperformthetask.Thebasicideaisthatnoisefrequenciesthatdonotaffectperformancecorrespondtospatialfrequenciestowhichthehumanperceptualfilterisnotsensitive.Ontheotherhand,noisefrequencybandsthatdrasticallyelevatethethresholdenergyfordetectioncorrespondtospatialfrequenciestowhichthehumanperceptualfilterishighlysensitive.Thus,onecanderivemathematicalmethodstoderivethefrequencytuningoftheperceptualfilters(e.g.,Solomon&Pelli,1994).Themainlimitationofthebandpassnoise-maskingtechniqueisthatitassumesthattheobserveralwaysmonitorsthesameperceptualfilterinthedifferentbandpassnoiseconditions.AnoptimalBayesianobserverwouldchangetheperceptualfiltertoavoidregionsofhighnoisetooptimizeperformance.Theabilityofamodelorhumanobservertomodifytheperceptualfilterasafunctionofthefrequencycontentofthenoiseisreferredtoasprewhiteningand/oroff-frequencylooking.Ithasbeenshownthatinmanyinstanceshumanobserversareabletodooff-frequencylookingand/orprewhitening(Burgess,Li,&Abbey,1997;Burgess,1999;AbbeyandEckstein,2000;Solomon,2000).Inthesecases,useofthebandpassnoise-maskingtechniquetoderiveanunderlyingsinglefixedperceptualfiltercanresultinmisleadingresults.Becausetheclassificationimagetechniquedoesnotchangethefrequencycontentofthenoise,itdoesnotpresenttheproblemofoff-frequencylooking. Conclusions WehaveappliedtheclassificationimagetechniquetodeterminehowattentionaffectstheprocessingofinformationattheattendedandunattendedlocationsinthePosnercueingparadigm.Ourresultsshowthat,forthecontrastdiscriminationtaskstudied,changesintheshapeoftheperceptualfilterswereneitherstatisticallysignificantnorwerethesmallchangesintheshapesoftheperceptualfiltersabletoaccountforthesizeofthecueingeffectmeasuredforhumanobservers.Ontheotherhand,thehumanclassificationimagesignaturescorrespondedtotheconceptthatvisualattentionweightstheinformationattheattendedlocationmoreheavily.TheBayesianmodelexploredhereisanalogoustotheBayesianorquasi-Bayesian(i.e.,approximationstoBayesianmodels)modelsusedpreviouslytoexplainvariousresultsinvisualsearch,suchasset-sizeeffectsandthedichotomybetweenfeatureandconjunctionsearches.Thusinthegreatercontext,ourfindingssuggestthatforsimpletasks,thePosnercueingparadigmnowjoinsanotherinfluentialattentionalparadigm,visualsearch,thatcanbeexplainedintermsofaBayesianobserver.Inthisframework,visualattentionallowstheobservertoselectordifferentiallyweightinformationatdifferentlocationsbutdoesnotchangetheperceptualqualityoftheprocessedinformationateachofthepossiblelocations. Acknowledgments ThisworkwassupportedbyaNationalAeronauticsandSpaceAdministrationgrant(NASANAG-1157)andaNationalInstitutesofHealthgrant(NIH-HL53455).TheauthorswouldliketothankAlbertAhumadaJr.forinsightinthetopicofclassificationimagesandCharlieChubbforacarefulreviewandinsightfulcomments.TheauthorsalsothankKristineFazio,AudreyHill-Lindsey,OrianaChavez,andKathyChongforparticipatingasobserversinthestudy.SomeoftheresultsinthispaperwerepreviouslypresentedattheAnnualmeetingoftheVisionScienceSociety,Sarasota,FL,2001.CommercialRelationships:None. Footnotes Footnotes1 Inthispaperweusethetermfiltertorefertoatemplatethatisappliedtoindividuallocationsoftheimageandnottoakernelthatisconvolvedwiththeimage. Footnotes2 Intheperceptualtemplatemodel(PTM)model,attentionchangeswhatisreferredtoastheexternalnoiseexclusion,whichisidenticaltowhattraditionallyisknownasthesamplingefficiencyinthelineartemplatemodel(Burgess,Wagner,Jennings,&Barlow,1981). Footnotes3 Oursimulationsshowthattherelationshipdependsonthedecisionthreshold(orcriterion)usedbythemodel.Itisthereforeimportantwheninferringthehumanweightstoadjustthemodelthresholdtomatchthemeasuredfalsealarmratesintheindividualhumanobservers. Footnotes4 ApotentialproblemisthatthetwosampleHotellingT2assumesequalcovariance.Thisisclearlynottrue,atleastforobserversA.H.andK.F.,wherethecovariancefortheuncuedlocationwasscaledbyaconstant,resultinginhighervariancethanforthecuedlocation.ItoandSchull(1964)haveshownthattheHotellingT2statisticisrobusttoviolationsoftheequalcovariancewhenNislarge.Webelieveourcase,Nofapproximately1,625,tobesufficientlylarge. AppendixA IdealandSuboptimalBayesianObserver TheperceptualfiltersatthecuedanduncuedlocationsaregivenbyFc(x.y)andFu(x,y)andarenormalizedtohaveunitlength.Theimageatthecuedanduncuedlocationsisgivenbygc,i(x,y)andgu,i(x,y).Thefirstsubscriptreferstothelocations(“c”forcuedand“u”foruncued),whereasthesecondsubscriptreferstotheithtrial. Theimagesforsignal-presentvalidcuetrialsaregivenby (A.1)wheres(x,y)isthesignalluminanceprofile,p(x,y)isthepedestalthathasthesamespatialprofileasthesignal,andnc,i(x,y)andnu,i(x,y)aretheexternalimagenoisesamplesatthecuedanduncuedlocations,whichareindependentlysampled. Forsignal-presentinvalidcuetrialstheimagesaregivenby (A.2). Finallyforsignalabsenttrialstheimagesaregiven by (A.3) Theresponseofeachoftheperceptualfilters(λc,iandλu,i)tothestimuliintheithtrialisgivenby (A.4) (A.5)whereεc,iandεu,iisarandomscalarcorrespondingtointernalnoise,whichisindependentlysampledforeachtrialandlocation(cuedanduncued)fromaGaussiandistributionwithstandarddeviationσint. TheBayesianmodelcalculatesthelikelihoodoftheresponses(λc,iandλu,i)giventhatthesignalispresentatthecuedlocation,L(λc,λu|sc,nu),andalikelihoodoftheresponsesgiventhatthesignalispresentattheuncuedlocationL(λc,λu|nc,su).Themodelthencomputesanoveralllikelihoodoftheresponsesgiventhatthesignalispresentbyweightingtheindividuallikelihoodfromeachlocationbyaweight(wcandwu): (A.6) Theoptimalweightsarethosethatmatchthepriorprobabilityofthesignalappearingatthelocationsgivenbytheprecuevalidity.Nextthemodelcomputesalikelihoodoftheresponsesgivensignalabsence,L(λc,λu|nc,nu).Finally,theBayesianmodelcomputestheratioofthelikelihoodforsignalpresenceandsignalabsence: (A.7) Themodelmakesadecisionbycomparingthelikelihoodratio(Lratio)toadecisionthresholdorcriterion: IfLratio>threshold,thenrespond“signalpresent,”;otherwiserespond“signalabsent.” ForthespecificcasewherethefilterresponsesateachlocationareGaussiandistributed,theindividuallikelihoodofthefilterresponsesgiventhesignalpresenceandabsenceisgivenby (A.8)and, (A.9)whered′uandd′caredefinedasthemeanresponseoftheperceptualfiltertothesignalpresentlocationminustheresponsetothesignalabsentlocationdividedbythestandarddeviationoftheresponse(includingtheeffectsofexternalandinternalnoise): (A.10)where,istheexpectedvalueoftheseresponsesoftheperceptualfilteratthecuedlocationwhenthesignalispresent;istheexpectedvalueoftheresponseoftheperceptualfilteratthecuedlocationwhenthesignalisabsent;σλcisthestandarddeviationoftheresponseduetoexternalnoise;and,σintisthestandarddeviationoftheadditiveinternalnoise.Similarly,d′uisgivenby (A.11) Whenthenoiseiswhite,onecancalculated′candd′udirectlyfromtheperceptualfilter,F(x.y),thesignal,s(x,y),andexternalimagenoise(pixelstandarddeviationgivenbyσe): (A.12) (A.13) ThisgeneralframeworkoftheBayesianobserverbecomestheidealobserverforthecaseofwhitenoisewhenthefiltersatthelocationsmatchtheoptimalfilter(thesignalforthecaseofwhitenoise),theweightingofthecuedanduncuedlikelihoodsaredeterminedbytheprecuevalidity(0.8forthecuedlocationand0.2fortheuncuedlocationinthepresentstudy),andthereisnointernalnoise. MonteCarloSimulationsofModels ThemodeloutlinedwasimplementedinInteractiveDataLanguage(IDL).Inthecomputerimplementation,continuousintegralsintheaboveequationswerereplacedbysummations.ThedifferentmodelsofattentionalweightingswereimplementedbychangingtheweightsinEquationA.7.ThedifferentmodelsthatassumedthatattentionchangestheshapeoftheperceptualfiltersatthecuedlocationwereimplementedbychangingthefiltersinEquationsA.4andA.5.Thedecisionthresholdofthemodelwasalsoadjustedtomatchthefalsealarmrateofthehumanobservers.Theinternalnoisewasadjustedtomatchhumanperformance. AppendixB SinglePerceptualFilterModelWithAttentionalSwitchingDeterminedbyPriorProbabilities Herewederivetheperformancepredictionsforamodelthatmonitorsasingleperceptualfilterthatisswitchedfromthecuedlocationtotheuncuedlocationfromtrialtotrial(attentionalswitching).Thefrequencywithwhichthemodelmonitorstheperceptualfilteratthecuedlocationismatchedtothepriorprobabilityofthesignalbeingpresent(0.8forthecuedlocationand0.2fortheuncuedlocation).Inthistreatment,theattentionalswitchingmodelisdevelopedinthecontextofsignaldetectiontheorywheretheresponsestoeachlocationarestochastic(duetotheexternalandinternalnoise). ThefirststagesofthemodelremainthesameasthosedescribedfortheBayesianmodel.Theobserverisassumedtohavetwoperceptualfilters(EquationsA.4andA.5),andtheirresponsesareperturbedbyinternalnoise.ThedifferencebetweentheBayesianmodelandtheattentionalswitchingmodelisthatthelattermodelmonitorsonlyoneperceptualfilteroneachtrialtoreachadecision.Themodelcomputesthelikelihoodoftheresponseofasingleperceptualfiltergiventhatthesignalispresent,thelikelihoodgiventhatthesignalisabsent,andcomputesalikelihoodratio.Thisdecisionruleresultsinidenticalperformancetocomparingtheresponseofthesingleperceptualfiltertoadecisioncriterion(thelikelihoodisamonotonicfunctionofthefilterresponse). Thehitrateforthemodelinthevalidcuetrialsiscalculatedbyconsideringthe0.8proportionofthevalidcuetrialsinwhichtheobserverwillcorrectlymonitorthecuedlocationandthe0.2proportionofthevalidcuetrialsinwhichtheobserverincorrectlymonitorstheuncuedlocation(i.e.,thesignalisatthecuedlocationbuthe/sheismonitoringtheresponsearisingfromtheuncuedlocation). Thehitrateforthevalidcuetrialsisthereforegivenbytheprobabilitythatthefilterresponseexceedsthedecisioncriteria(th)inthesetwocircumstances: (B.1)whereGisthecumulativeGaussian,d′istheindexofdetectability,whichisgivenbyEquationsA.11andA.12andthisthedecisioncriteria. Similarly,thehitratefortheinvalidcuetrialsisgivenby (B.2) Thefalsealarmrateforbothtypesoftrialsissimplygivenbytheprobabilityoftheresponseexceedingthedecisioncriteriainsignalabsenttrials: (B.3) Toobtainthepredictionsoftheattentionalswitchingmodelcomparabletothelevelsofhumanperformanceobtainedinthisstudy,thedecisioncriteriaandtheinternalnoisewereadjustedtomatchthefalsealarmrateandhitrateinthevalidcueconditionofthehumanobservers.PerformancewascalculatedfromEquationsB.1,B.2,andB.3usingthecumulativenormalfunctionsofIDL. References Abbey,C.K. Eckstein,M.P. Bochud,F.O. (1999).Estimationofhuman-observertemplatesfor2alternativeforcedchoicetasks.ProceedingsofSPIE,3663,284–295. Abbey,C.K. Eckstein,M.P. (2000).Estimatesofhuman-observertemplatesforsimpledetectiontasksincorrelatednoise.ProceedingsofSPIE3981,70–77. Abbey,C.K. Eckstein,M.P. (2002).Classificationimageanalysis:Estimationandstatisticalinferencefortwo-alternativeforced-choiceexperiments.JournalofVision,2(1),inpress. Ahumada,A.Jr. Lovell,J.Jr. .(1971).Stimulusfeaturesinsignaldetection,JournaloftheAcousticalSocietyofAmerica,49. Ahumada,A.Jr. (1987).Puttingthevisualsystemnoisebackinthepicture.JournaloftheOpticalSocietyofAmericaA,4,2372–2378.[PubMed][CrossRef] Ahumada,A.Jr. (1996).PerceptualclassificationimagesfromVernieracuitymaskedbynoise[Abstract].Perception,26,EuropeanConferenceonVisualPerception,Supplement18. Beard,B.L. Ahumada,A.Jr. ,(1998).Techniquetoextractrelevantimagefeaturesforvisualtasks.ProceedingsofSPIE,HumanVision&ElectronicImaging,3299,79–85. Burgess,A.E. Wagner,R.F. Jennings,J. Barlow,H.B. (1981).Efficiencyofhumanvisualsignaldiscrimination.Science,214,93–94.[PubMed][CrossRef][PubMed] Burgess,A.E. Ghandeharian,H. (1984).Visualsignaldetection.I.Abilitytousephaseinformation.JournaloftheOpticalSocietyofAmericaA,1,900–905.[PubMed][CrossRef] Burgess,A.E. (1999).Visualsignaldetectionwithtwo-componentnoise:Low-passspectrumeffect.JournaloftheOpticalSocietyofAmericaA,16,694–704.[PubMed][CrossRef] Burgess,A.E. Li,X. Abbey,C.K. (1997).Visualsignaldetectabilitywithtwonoisecomponents:Anomalousmaskingeffects.JournaloftheOpticalSocietyofAmericaA,14,2420–2442.[PubMed][CrossRef] Dosher,B.A. Lu,Z.L. (2000a).Noiseexclusioninspatialattention.PsychologicalScience,11,139–146.[PubMed][CrossRef] Dosher,B.A. Lu,Z.L. (2000b).Mechanismsofperceptualattentioninprecueingoflocation.VisionResearch,40,1269–1292.[PubMed][CrossRef] Eckstein,M.P. Ahumada,A.J. Watson,A.B. (1997).Visualsignaldetectioninstructuredbackgrounds.II.Effectofcontrastgaincontrol,backgroundvariationsandwhitenoise.JournaloftheOpticalSocietyofAmericaA,14,2406–2419.[PubMed][CrossRef] Eckstein,M.P. (1998).Thelowerefficiencyforconjunctionsisduetonoiseandnotserialattentionalprocessing.PsychologicalScience,9,111–118.[CrossRef] Eckstein,M.P. Thomas,J.P. Palmer,J. Shimozaki,S.S. (2000).Asignaldetectionmodelpredictstheeffectsofsetsizeonvisualsearchaccuracyforfeature,conjunction,tripleconjunction,anddisjunctiondisplays.Perception&Psychophysics,62,425–451.[PubMed][CrossRef][PubMed] Gold,J.M. Murray,R.F. Bennett,P.J. Sekuler,A.B. (2000).Derivingbehaviouralreceptivefieldsforvisuallycompletedcontours.CurrentBiology,10,663–666.[PubMed][CrossRef][PubMed] Harris,R.J. (1985).Aprimerofmultivariatestatistics(pp.99–118).Orlando,Florida:AcademicPress. Ito,K. Schull,W.J. (1964).OntherobustnessoftheT2testinmultivariateanalysisofvariancewhenvariance-covariancematricesarenotequal.Biometrika,51,71–82. Haenny,P.E. Schiller,P.H. (1988).Statedependentactivityinmonkeyvisualcortex.I.SinglecellactivityinV1andV4onvisualtasks.ExperimentalBrainResearch,69,225–244.[[PubMed][CrossRef][PubMed] Henderson,J.M. (1991).Stimulusdiscriminationfollowingcovertattentionalorientingtoanexogenouscue.JournalofExperimentalPsychology:HumanPerceptionandPerformance,17,91–106.[PubMed][CrossRef][PubMed] Kinchla,R.A. Chen,Z. Evert,D. (1995).Precueeffectsinvisualsearch:Dataorresourcelimited?PerceptionandPsychophysics,57,441–450.[PubMed][CrossRef][PubMed] Lu,Z.L. Dosher,B.A. (2000).Spatialattention:Differentmechanismsforcentralandperipheraltemporalprecues?JournalofExperimentalPsychology:HumanPerceptionandPerformance,26,1534–1548.[PubMed][CrossRef][PubMed] Lu,Z.L. Dosher,B.A. (1999).Characterizinghumanperceptualinefficiencieswithequivalentinternalnoise.JournaloftheOpticalSocietyofAmericaA,16,764–778.[PubMed][CrossRef] Luck,S.J. Hillyard,S.A. Mouloua,M. Hawkins,H.L. (1996).Mechanisimsofvisual-spatialattention:Resourceallocationoruncertaintyreduction?JournalofExperimentalPsychology:HumanPerceptionandPerformance,22,725–737.[PubMed][CrossRef][PubMed] Neri,P. Parker,A.J. Blakemore,C. (1999).Probingthehumanstereoscopicsystemwithreversecorrelation.Nature,401,695–698.[PubMed][CrossRef][PubMed] Nolte,L.W. Jaarsma,D. (1967).MoreonthedetectionofoneofMorthogonalsignals.JournaloftheAcousticalSocietyofAmerica,41,497–505.[CrossRef] Palmer,J. (1995).Attentioninvisualsearch:Distinguishingfourcausesofset-sizeeffects.CurrentDirectionsinPsychologicalScience,4,118–123.[CrossRef] Palmer,J. Verghese,P. Pavel,M. (2000).Thepsychophysicsofvisualsearch.VisionResearch,40,1227–1268.[PubMed][CrossRef][PubMed] Pelli,D.G. (1985).Uncertaintyexplainsmanyaspectsofvisualcontrastdetectionanddiscrimination.JournaloftheOpticalSocietyofAmericaA,2,1508–1530.[[PubMed][CrossRef] Poder,E. (1999).Searchforfeatureandforrelativeposition:Measurementofcapacitylimitations.VisionResearch,39,1321–1327.[PubMed][CrossRef][PubMed] Posner,M.I. (1980).Orientingofattention.QuarterlyJournalofExperimentalPsychology,32,3–25.[PubMed][CrossRef][PubMed] Posner,M. Peterson,S. (1990).Theattentionsystemofthehumanbrain.AnnualReviewofNeuroscience,13,25–42.[PubMed][CrossRef][PubMed] Ringach,D.L. Hawken,M.J. Shapley,R. (1997).Dynamicsoforientationtuninginmacaqueprimaryvisualcortex.Nature.387,281–284.[PubMed][CrossRef][PubMed] Shaw,M.L. (1982).Attendingtomultiplesourcesofinformation.I.Theintegrationofinformationindecision-making.CognitivePsychology,14,353–409.[CrossRef] Shimozaki,S.S. Eckstein,M.P. Abbey,C.K. ,(2001).Cueingeffectswithoutcapacitylimitations[Abstract].InvestigativeOphthalmologyandVisualScience,42,5867. Solomon,J.A. Pelli,D.G. (1994).Thevisualfiltermediatingletteridentification.Nature,369,395–397.[PubMed][CrossRef][PubMed] Solomon,J.A. (2000).Channelselectionwithnon-white-noisemasks.JournaloftheOpticalSocietyofAmericaA,17,986–993.[PubMed][CrossRef] Sperling,G. Dosher,B.A. K.R.,Boff L.,Kaufman J.P.,Thomas (1986).Strategyoptimizationinhumaninformationprocessing Handbookofperceptionandhumanperformance:Vol.1.Sensoryprocessesandperception(pp.2-1–2-65).NewYork:JohnWileyandSons. Spitzer,H. Desimone,R. Moran,J. (1988).Increasedattentionenhancesbothbehavioralandneuronalperformance.Science,240,338–340.[PubMed][CrossRef][PubMed] Verghese,P. Stone,L.S. (1995).Combiningspeedinformationacrossspace.VisionResearch,35,2811–2823.[PubMed][CrossRef][PubMed] Verghese,P. (2001).Visualsearchandattention:Asignaldetectiontheoryapproach.Neuron,31,523–535.[PubMed][CrossRef][PubMed] Yeshurun,Y. Carrasco,M. (1999).Spatialattentionimprovesperformanceinspatialresolutiontasks.VisionResearch,39,293–306.[PubMed][CrossRef][PubMed] Yeshurun,Y. Carrasco,M. (1998).Attentionimprovesorimpairsvisualperformancebyenhancingspatialresolution.Nature,396,72–76.[PubMed][CrossRef][PubMed] Figure1ViewOriginalDownloadSlide SchematicofaBayesianobserverinthePosnercueingparadigm.Stimuliareasimpleschematic(actualexperimentalimagescontainedaddedvisualnoise).Thetaskoftheobserveristodeterminewhetheracontrastincrementispresentatoneofthetwolocations(yes/notask).Inthisstudy,theprecueisvalid80%ofthetime.Figure1 SchematicofaBayesianobserverinthePosnercueingparadigm.Stimuliareasimpleschematic(actualexperimentalimagescontainedaddedvisualnoise).Thetaskoftheobserveristodeterminewhetheracontrastincrementispresentatoneofthetwolocations(yes/notask).Inthisstudy,theprecueisvalid80%ofthetime.ViewOriginalDownloadSlide Figure2ViewOriginalDownloadSlide Uppergraph:Hitrateforvalidcueandinvalidcuetrialsforfourhumanobservers(K.F.,A.H.,O.C.,K.C.).AlsoplottedareaBayesianobserver(triangles)thatsimplyoptimallyweightsthelikelihoodfromthecuedanduncuedlocationsandaTuningmodel(circles)inwhichvisualattentionchangesthetuningoftheperceptualfilter.Lowergraph:Falsealarmrateforvalidandinvalidtrialsforthesamefourhumanobserversandthetwomodels.Figure2 Uppergraph:Hitrateforvalidcueandinvalidcuetrialsforfourhumanobservers(K.F.,A.H.,O.C.,K.C.).AlsoplottedareaBayesianobserver(triangles)thatsimplyoptimallyweightsthelikelihoodfromthecuedanduncuedlocationsandaTuningmodel(circles)inwhichvisualattentionchangesthetuningoftheperceptualfilter.Lowergraph:Falsealarmrateforvalidandinvalidtrialsforthesamefourhumanobserversandthetwomodels.ViewOriginalDownloadSlide Figure6ViewOriginalDownloadSlide Toprow:Perceptualfiltersforthecuedanduncuedlocations.Bottomrow:Classificationimagesobtainedthroughsimulations.Left:PerceptualfilterattheuncuedlocationisasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationisasuboptimalwideGaussian,whereasthatforthecuedlocationisanoptimalGaussian.Figure6 Toprow:Perceptualfiltersforthecuedanduncuedlocations.Bottomrow:Classificationimagesobtainedthroughsimulations.Left:PerceptualfilterattheuncuedlocationisasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationisasuboptimalwideGaussian,whereasthatforthecuedlocationisanoptimalGaussian.ViewOriginalDownloadSlide Figure3ViewOriginalDownloadSlide (a)Toprow:Twoequivalentperceptualfilters(Gaussianfiltersthatmatchthesignal)atthecuedanduncuedlocationsforallthreesimulations.(b)Bottomrow:Theclassificationimagesfromsimulationsassociatedtodifferentweightingsofthelikelihoodatthecuedanduncuedlocation.Inallofthesemodels,visualattentionchangestheweightingsofthelikelihoodfromthecuedanduncuedlocations.Theimagesshownherehavebeenreduced(byafactorof2usingbilinearinterpolation)fromtheactualimages.Figure3 (a)Toprow:Twoequivalentperceptualfilters(Gaussianfiltersthatmatchthesignal)atthecuedanduncuedlocationsforallthreesimulations.(b)Bottomrow:Theclassificationimagesfromsimulationsassociatedtodifferentweightingsofthelikelihoodatthecuedanduncuedlocation.Inallofthesemodels,visualattentionchangestheweightingsofthelikelihoodfromthecuedanduncuedlocations.Theimagesshownherehavebeenreduced(byafactorof2usingbilinearinterpolation)fromtheactualimages.ViewOriginalDownloadSlide Figure4ViewOriginalDownloadSlide Radialaveragesofclassificationimagesfromsimulationsforthreedifferentattentionalweightingsofthelikelihoodfromthecued(blue)anduncued(red)locations.Solidcurvesarescaledversionsoftheperceptualfilterusedinthesimulations.Top:Optimalweighting.Middle:Attendbothlocationsequally.Bottom:Attendonlycuedlocation.Errorbarsareomittedwhentheyaresmallerthanthesymbol.Figure4 Radialaveragesofclassificationimagesfromsimulationsforthreedifferentattentionalweightingsofthelikelihoodfromthecued(blue)anduncued(red)locations.Solidcurvesarescaledversionsoftheperceptualfilterusedinthesimulations.Top:Optimalweighting.Middle:Attendbothlocationsequally.Bottom:Attendonlycuedlocation.Errorbarsareomittedwhentheyaresmallerthanthesymbol.ViewOriginalDownloadSlide Figure5ViewOriginalDownloadSlide Relationshipbetweentheratioofmagnitudesofclassificationimagesandtheinputweightofthemodelforthecuedlocation.Figure5 Relationshipbetweentheratioofmagnitudesofclassificationimagesandtheinputweightofthemodelforthecuedlocation.ViewOriginalDownloadSlide Figure7ViewOriginalDownloadSlide Toprow:Fouriertransformoftheperceptualfiltersforthecuedanduncuedlocations.Bottomrow:ClassificationimagesobtainedthroughMonteCarlosimulations.Radialdistancefromthecenterrepresentsspatialfrequencywiththezerofrequencyatthecenter.Left:PerceptualfilterattheuncuedlocationistheFouriertransformofasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationistheFouriertransformofsuboptimalspatiallywideGaussian(andthereforenarrowerthantheoptimalfilterintheFourierdomain),whereasthatforthecuedlocationisanoptimalGaussian.Figure7 Toprow:Fouriertransformoftheperceptualfiltersforthecuedanduncuedlocations.Bottomrow:ClassificationimagesobtainedthroughMonteCarlosimulations.Radialdistancefromthecenterrepresentsspatialfrequencywiththezerofrequencyatthecenter.Left:PerceptualfilterattheuncuedlocationistheFouriertransformofasuboptimalDifferenceofGaussians,whereasthatforthecuedlocationisanoptimalGaussian.Right:PerceptualfilterattheuncuedlocationistheFouriertransformofsuboptimalspatiallywideGaussian(andthereforenarrowerthantheoptimalfilterintheFourierdomain),whereasthatforthecuedlocationisanoptimalGaussian.ViewOriginalDownloadSlide Figure8ViewOriginalDownloadSlide Radialaveragesofclassificationimages(Figures6and7)forsimulationsfortwodifferentexamplesofmodelswherevisualattentionchangestheshapeoftheperceptualfilteratthecuedlocations.Bluesymbolscorrespondtoradialaveragesofclassificationimagesatthecuedlocation,whereastheredsymbolscorrespondtothosefromtheuncuedlocation.Solidlinescorrespondtothescaledradialaveragesoftheperceptualfiltersusedinthemodelsimulations.Leftcolumn:OptimalGaussianfilterforthecuedlocationandaDifferenceofGaussiansfilterfortheuncuedlocation.Rightcolumn:OptimalGaussianfilterforthecuedlocationandaspatiallywidersuboptimalGaussianfortheuncuedlocation.Toprow:Spatialdomain.Bottomrow:Fourierdomain.Figure8 Radialaveragesofclassificationimages(Figures6and7)forsimulationsfortwodifferentexamplesofmodelswherevisualattentionchangestheshapeoftheperceptualfilteratthecuedlocations.Bluesymbolscorrespondtoradialaveragesofclassificationimagesatthecuedlocation,whereastheredsymbolscorrespondtothosefromtheuncuedlocation.Solidlinescorrespondtothescaledradialaveragesoftheperceptualfiltersusedinthemodelsimulations.Leftcolumn:OptimalGaussianfilterforthecuedlocationandaDifferenceofGaussiansfilterfortheuncuedlocation.Rightcolumn:OptimalGaussianfilterforthecuedlocationandaspatiallywidersuboptimalGaussianfortheuncuedlocation.Toprow:Spatialdomain.Bottomrow:Fourierdomain.ViewOriginalDownloadSlide Figure9ViewOriginalDownloadSlide Humanobserverclassificationimagesforthecuedanduncuedlocations.Figure9 Humanobserverclassificationimagesforthecuedanduncuedlocations.ViewOriginalDownloadSlide Figure10ViewOriginalDownloadSlide HumanobserverclassificationimagesintheFourierdomain(imaginarypartdiscarded)computedseparatelyforthecuedanduncuedlocations.TheFourieroriginisplacedatthecenterofeachimage.Figure10 HumanobserverclassificationimagesintheFourierdomain(imaginarypartdiscarded)computedseparatelyforthecuedanduncuedlocations.TheFourieroriginisplacedatthecenterofeachimage.ViewOriginalDownloadSlide Figure11ViewOriginalDownloadSlide Radialaverages(spatialdomain)oftheclassificationimagesforthefourhumanobservers.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.Blacksolidlinesarethebest-fitDifferenceofGaussianstothedata.Thedottedlinecorrespondstotheradialprofileoftheoptimalfilter.Figure11 Radialaverages(spatialdomain)oftheclassificationimagesforthefourhumanobservers.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.Blacksolidlinesarethebest-fitDifferenceofGaussianstothedata.Thedottedlinecorrespondstotheradialprofileoftheoptimalfilter.ViewOriginalDownloadSlide Figure12ViewOriginalDownloadSlide Radialaverages(Fourierdomain)oftheclassificationimagesforthefourhumanobservers.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.ThedottedlinecorrespondstotheFouriertransformoftheoptimalprofile.Figure12 Radialaverages(Fourierdomain)oftheclassificationimagesforthefourhumanobservers.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.ThedottedlinecorrespondstotheFouriertransformoftheoptimalprofile.ViewOriginalDownloadSlide Figure13ViewOriginalDownloadSlide Radialaverages(spatialdomain)oftheuncuedlocationscaled(minimizingtheweightederror)tomatchtheradialaverageoftheclassificationimageforthecuedlocation.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.Figure13 Radialaverages(spatialdomain)oftheuncuedlocationscaled(minimizingtheweightederror)tomatchtheradialaverageoftheclassificationimageforthecuedlocation.Topleft:O.C.Bottomleft:K.F.Topright:K.C.Bottomright:A.H.Bluesymbolscorrespondtothecuedlocationsandredsymbolscorrespondtotheuncuedlocations.ViewOriginalDownloadSlide Figure14ViewOriginalDownloadSlide Cueingeffect(hitrateforvalidtrialsminushitrateforinvalidtrials)measuredinhumanobservers(redsymbols).Greensymbolscorrespondtothecueingeffectpredictedbythedifferencesintheinferredperceptualfiltersfromthehumanclassificationimages.Figure14 Cueingeffect(hitrateforvalidtrialsminushitrateforinvalidtrials)measuredinhumanobservers(redsymbols).Greensymbolscorrespondtothecueingeffectpredictedbythedifferencesintheinferredperceptualfiltersfromthehumanclassificationimages.ViewOriginalDownloadSlide Table1 ViewTable Hitrateforvalid andinvalidcuetrialsandfalsealarmratesforhumanobserversinthecontrast discriminationPosnertask.Table1 Hitrateforvalid andinvalidcuetrialsandfalsealarmratesforhumanobserversinthecontrast discriminationPosnertask.ObserverHitrate(validtrials)Hitrate(invalidtrials)Falsealarmrate(alltrials)Cueingeffect(HRv–HRiv)O.C.0.8240.7160.2350.108K.F.0.8450.6550.1940.190K.C.0.8900.7290.2700.160A.H.0.8800.6490.2270.231 Table2 ViewTable Best-fitparameters forDifferenceofGaussianstoradialaveragesofhumanclassificationimages withfourfittingparameters.Goodnessoffitandestimatedweightsarealso given.Table2 Best-fitparameters forDifferenceofGaussianstoradialaveragesofhumanclassificationimages withfourfittingparameters.Goodnessoffitandestimatedweightsarealso given.ObserverPerceptualfilteratthecuedlocationPerceptualfilterattheuncuedlocationK1K2σ1σ2χ1w1K1K2σ1σ2χ2w2O.C.1.560.574.97.321.090.760.600.114.39.37.5980.24K.F.2.140.795.18.219.070.840.460.085.314.025.070.16K.C.1.20.164.311.839.250.800.650.114.38.918.80.20A.H.1.70.514.98.433.830.880.760.57.36.420.710.12 Table3 ViewTable Performanceofthebest-fitDifferenceofGaussianswithequalweightingofthe likelihoodofthecuedanduncuedlocations.Table3 Performanceofthebest-fitDifferenceofGaussianswithequalweightingofthe likelihoodofthecuedanduncuedlocations.ObserverEqualweightingHitrate(validtrials)Hitrate(invalidtrials)Falsealarmrate(alltrials)Cueingeffect(HRv–HRiv)O.C.0.9390.9190.0530.02K.F.0.9230.9430.059−0.02K.C.0.9300.9290.0710.001A.H.0.9300.9690.050−0.039 Table4 ViewTable Performanceofthe best-fitDifferenceofGaussianswithequalweightingofthecuedanduncued locations.Fortheseresults,internalnoisewasinjectedtomatchthehuman performancelevels.Table4 Performanceofthe best-fitDifferenceofGaussianswithequalweightingofthecuedanduncued locations.Fortheseresults,internalnoisewasinjectedtomatchthehuman performancelevels.ObserverEqualweightingHitRate(validtrials)HitRate(invalidtrials)Falsealarmrate(alltrials)Cueingeffect(HRv–HRiv)O.C.0.8190.7990.2310.02K.F.0.8210.8240.233−0.03K.C.0.8920.8830.2640.009A.H.0.8800.9240.229−0.043 ©2002ARVO 13,723 Views 105 Citations ViewMetrics × RelatedArticles Evidenceforchromaticedgedetectorsinhumanvisionusingclassificationimages Labeledlinesforimageblurandcontrast Numerosityasatopologicalinvariant Continuouspsychophysics:Target-trackingtomeasurevisualsensitivity LetteridentificationandtheNeuralImageClassifier FromOtherJournals Spatialintegrationofcompoundgratingswithvariousnumbersoforientationcomponents. BaselineDetrendingforthePhotopicNegativeResponse EffectsofLong-WavelengthLightingonRefractiveDevelopmentinInfantRhesusMonkeys AssessmentofVisualandChromaticFunctionsinaRodentModelofRetinalDegeneration TheEffectofBangerterFiltersonBinocularFunctioninObserversWithAmblyopia RelatedTopics VisualPsychophysicsandPhysiologicalOptics Advertisement Copyright©2015AssociationforResearchinVisionandOphthalmology. Forgotpassword? ToViewMore... Purchasethisarticlewithanaccount. CreateanAccount or SubscribeNow × × ThisPDFisavailabletoSubscribersOnly Signinorpurchaseasubscriptiontoaccessthiscontent. × Youmustbesignedintoanindividualaccounttousethisfeature. × Thissiteusescookies.Bycontinuingtouseourwebsite,youareagreeingtoourprivacypolicy.Accept
延伸文章資訊
- 1Posner cueing task - Wikipedia
The Posner cueing task, also known as the Posner paradigm, is a neuropsychological test often use...
- 2Posner cueing task - Free online template and explainer guide
The Posner cueing task is designed to measure the time it takes to re-orient attention from one s...
- 3Spatial Cueing
The spatial cueing or Posner cueing task (Posner, 1980) is a common paradigm for studying visual ...
- 4The footprints of visual attention in the Posner cueing ...
An important paradigm for studying visual attention in the last two decades has been the Posner c...
- 5Experimental design a, A modified Posner cueing task with...
Retinal size was fixed, while canonical size varied and participants identified target letters. b...