How to perform the Wilcoxon ranked sum non-parametric test for independent samples in Excel, a test used when the assumptions for the t test are violated.
Skiptocontent
Menu
Whentherequirementsforthet-testfortwoindependentsamplesarenotsatisfied,theWilcoxonRank-Sumnon-parametrictestcanoftenbeusedprovidedthetwoindependentsamplesaredrawnfrompopulationswithanordinaldistribution.
Forthistestweusethefollowingnullhypothesis:
H0:theobservationscomefromthesamepopulation
Fromapracticalpointofview,thisimplies:
H0: ifoneobservationismadeatrandomfromeachpopulation(callthemx0andy0),thentheprobabilitythatx0>y0isthesameastheprobabilitythatx0115=Wcrit,wecannotrejectthenullhypothesis,andsoconcludethereisnosignificantdifferencebetweentheeffectivenessofthedrugandthecontrol.
Example2:RepeatExample1withthelastdataelementforthegroupthattookthedrugremoved.
WeagainusetheWilcoxonRank-Sumtest,butthistimethesamplesizesareunequal.ThetestisasinFigure4.
Figure4–WilcoxonRank-SumTestforExample2
Theranksumsarecalculatedasinthepreviousexample,althoughsincesomeofthedatamaybeblank,weneedtouseaformulasuchas
=IF(A6<>””,RANK_AVG(A6,$A$6:$B$17,1),””).
Sincethesamplesizesaredifferent,abitmorecareisrequired.EssentiallyWrepresentsthelefttailstatisticandsoweneedtoalsoevaluatetherighttailstatisticW′,whichcanbeobtainedbyusingreverserankingasdescribedinFigure5:
Figure5–CalculationofW′usingreverseranks
ThevalueofW′ isthereforethesumoftheranksforthesmallersample,i.e.105.5.Fortunately,becauseofsymmetry,W’canmoreeasilybeobtainedviatheformula
wheren1=11(thesmallersamplesize)andn2=12(thelargersamplesize).Thusweobtain
W′ =11(11+12+1)–158.5=105.5(thevalueincellH11)
Forthetwo-tailedtest,whichiswhatweusuallyrequire,wecomparethesmallerofWandW′ withWcrit.TofindthevalueofWcrit, weagainusetheWilcoxonRank-SumTable forα=.05(two-tail)wheren1 =11andn2 =12toobtainWcrit =99.Sincemin(W,W′)=min(158.5,105.5)=105.5>99=Wcrit ,onceagainwecannotrejectthenullhypothesis.
Observation:Whenn1 =n2,thenW′ =R2,i.e.theranksumofthelargersample.ThusinExample1,W′ =180.5
Property1:Supposesample1hassizen1 andranksumR1 andsample2hassizen2 andranksumR2,thenR1 +R2 =n(n+1)/2wheren=n1 +n2.
Property2:Whenthetwosamplesaresufficientlylarge(sayofsize>10,althoughsomesay20),thenthe WstatisticisapproximatelynormalN(μ,σ2)where
Observation:Clickhere foraproofofProperty1or2.
Observation:UsingProperty2,forsamplessufficientlylarge,wecantestWusingthetechniquesfromSamplingDistributions.NotethattheresultisthesamewhetherweuseWorW′.
Observation:Sinceitcomparesranksums,theWilcoxonRank-Sumtestismorerobustthanthet-testasitislesslikelytoindicatespuriousresultsbasedonthepresenceofoutliers.Evenforlargesampleswheretheassumptionsforthet-testaremet,theWilcoxonRank-Sumtestisonlyalittlelessefficientthanthet-test.
Example3:Theobjectiveofastudywastodeterminewhetherthereisasignificantdifferenceinthemedianlifeexpectancybetweensmokersandnon-smokers.38smokersand40non-smokerswerechosenatrandomandtheirageatdeathrecordedinFigure6.
Figure6–Lifeexpectancyforbothgroups
AtableofranksiscreatedandthevaluesofWandW′ arecalculatedasinExamples1and2.Sincethesamplesizesaresufficientlylarge,wecantestW(orW′)usingthenormaldistributionasdescribedinFigure7.
Figure7–Wilcoxonrank-sumtestusingnormalapproximation
Sincetherearefewersmokersthannon-smokers,W=theranksumforthesmokers=1227(cellU8).Wecalculatethemean(cellU14)andvariance(cellU15)forWusingtheformulas=U6*(T6+U6+1)/2and=U14*T6/6respectively.Thestandarddeviation(cellU16)isthengivenbytheformula=SQRT(U15)asusual.
Wenowcalculatethep-value(cellU17)usingtheformula=2*NORM.DIST(U8,U14,U16,TRUE)sinceWW̄,wewouldusetheformula=2*(1–NORM.DIST(U8,U14,U16,TRUE)).Alternatively,wecouldhavecreatedthez-scoreandcalculatedthep-valueusingNORM.S.DIST.
Sincep-value=.006161<.05 notethathadweusedw realstatisticsexcelfunctions:thefollowingfunctionsareprovidedintherealstatisticspack: rank_combined rank_sum wilcoxon wtest wcrit wprob ifinterp="TRUE(default)thentherecommendedinterpolationisusedifnecessaryinthetablelookup;otherwiselinearinterpolationisused." notethatthevaluesfor anyemptyornon-numericcellsinr1orr2areignored. observation:ifr1representsthefirstncolumnsofrangerandr2representstheremainingcolumnsinranger similarly observation:inexample2 also>.05=α,andsoonceagainwecan’trejectthenullhypothesis.
SimilarlyinExample3,wecanusetheWILCOXONfunctiontoarriveatthesamevaluefortheminimumofW and W′,namelyWILCOXON(A6:H15,4)=WILCOXON(A6:D15,E6:H15)=1227,aswellasthesamep-value(assuminganormalapproximation),namelyWTEST(A6:H15,4)=WTEST(A6:D15,E6:H15)=0.003081.AlsoRANK_COMBINED(72,A6:D15,E6:H15,1)=37,RANK_SUM(A6:D15,E6:H15,1)=1854andRANK_SUM(E6:H15,A6:D15,1)=1227.
Observation:TheeffectsizefortheWilcoxonRankSumtestisgivenbythecorrelationcoefficient (seeBasicConceptsofCorrelation). ThecorrelationcoefficientfortheWilcoxonRankSumtestisgivenbytheformula
wherethez-scoreis
ForExample3,
andso
AsdescribedinCorrelationinRelationtot-test,aroughestimateofeffectsizeisthatr= .5 representsalargeeffectsize,r=.3representsamediumeffectsizeandr=.1representsasmalleffect.Thus,forExample3wehaveamedium-sizedeffect.
AlsoseeMann-WhitneyTest(includingFigure2)formoreinformationabouthowtocalculatetheeffectsizer inExcel.
ExactTest
Clickhereforadescriptionoftheexactversion oftheWilcoxonRank-SumExact Testusingthepermutationfunction.
81thoughtson“WilcoxonRankSumTestforIndependentSamples”
CuáleselvalordenparaidentificarenlaTablaelestadísticodepruebadeWilcoxon,paran=10diferenciasdedosfilasdedatos,deloscualessolo6deellosquedanordenadosporrangosdelospruebasunasumaderangos?(esdecirquelosotrosquedaroniguales;parap=0.05,unilátero,esT=11paran=10?,oT=2paran=6?)
Reply
Francisco,
FortheWilcoxonRankSumtest,therearetwosamplesandsotherearetwosamplesizesn1andn2.Theydon’thavetobeequal.
Charles
Reply
HelloCharles,
Idownloadedtherealstatsadd-inandcannotfindtheWCRITfunctionyoumentioned.Diditgetremoved?
Reply
Dillon,
Itisstillavailableeventhoughyoudon’tseeitasyouenterthefunctioninaspreadsheet.
ThereasonforthisisthatithasbeenreplacedbythefunctionMWINV(alpha,n1,n2,tails,False).Thisfunctiongivesanexactvalueinsteadofusingatablelookup.
Charles
Reply
Charles–yourwebsiteandstatisticalpackageareterrific!I’vebeensearchingthroughmyoldcollegestatisticsbookandtonsofotherwebsites,andit’shandsdownthebestsource.Thankssomuchforthis!
OntheWilcoxonRank-SumTest(one-tailed),Irealizeit’snormallyusedfordeterminingifthere’sastatisticaldifferencebetweentwogroups,butisitpossibletoexplicitlysayonegroupisgreaterthanorlessthantheother?Thewaythe“final”Wcanbe(1)thesmallerofthetwoW’s(ifsamesamplesizes)or(2)theWforthesmallersamplesizehasmesecond-guessingifthat’spossible.ForanappropriatelysmallW,youcansaythegroupsaredifferent,butisthereawayto“force”theWtobeforonegroup,soyoucanexplicitlysaywhichoneislessthantheother(perhapsdependingonthesignoftheZ-score)?I’mhopingtodothatwhenrunningmultiplecomparisonsandjusthavingasimple“Group1Group”,or“NotSignificantlyDifferent”output.
Potentiallyrelatedtothat,onyourExcelfileexample(Real-Statistics-Examples-Non-Parametric-1)ontab“Wilcoxon4”,ifyouswitchthe“Smokers”and“Non-Smokers”data,thep-valuerisesfrom0.006to1.99,butwiththesameZ-scores.Shouldthatnotkeepthesamep-valuethatwouldrejectthehypothesis/couldtherebeadditionalcriteriaonthe“final”Wthatwouldcorrectforthat?Andfurtherrelatedtothat,shouldthattabhaveasimilarformulaforwhenthesamplesizesarethesametousethesmallerW?
Thanksagain!
Reply
Thanksforthekindwordsaboutthewebsite.
1.WistheranksumforthelargersampleandW’istheranksumforthesmallersample.Ifthereisasignificantresult,youcanassignanordertothetwogroupsbasedontherank-sumdividedbythesamplesize.Ifthetwosampleshavesimilarshape(i.eitappearsthattheycomefrompopulationswiththesametypeofdistribution,thenthesamplewiththesmallerrank-sumdividedbysamplesizewouldcomefromthepopulationwiththesmallermedian.
2.Thep-valuecan’tbelargerthan1(itisaprobability)andsop-valuecan’tbeequalto1.99.Evenifyoureversetherolesofsmokersandnon-smokersthep-valueshouldbethesame,namely.006.
Charles
Reply
IthinkI’veconfusedmyselfwithmyfirstpost,sorry!
Intabs“Wilcoxon3”and“WilExact”ofthe“Non-Parametric1”file,Wiscalculatedas“theminimumranksum”ifthesamplesizesareequalandas“theranksumofthesmallersample”ifthesamplesizesaredifferent(cellH10inboth).Inthecaseofthedifferentsamplesizes,theW(andresultingW’)couldcomefromeitherofthesamples,andtheoutputwouldonlytellyouthey’resignificantlydifferentornot(youloseknowingwhichsampleiswhichthrutheIFstatement).Iwashopingforawaytooutputwhichsampleisthelesserorgreaterofthetwo(inaone-tailedtest).
Potentiallyrelatedtothatontab“Wilcoxon4,”whenyouswitchthedatabetweenNon-smokersandSmokers,theWcalculationchangesfromSmokerstoNon-smokers(becausesamplesizeschange),andthatflowsthrutomakethep-value=1.99currently.Itseemslikethep-valuemightneedanIFstatementtoadjusttotheothersamplesize(butthatmaybethecurrentlayoutwouldprovideawayto“remember”theW,topotentiallyoutputwhichsampleislesserorgreaterthantheother(insteadofjustdifferent)likeIwashopingabove).
I’mprobablytoofarintheweedswithmylackofknowledge,butthanksagainforyourhelp!
Reply
IthinkIunderstandyourresponse#1abovenow:Afteryou’vegottenasignificantlydifferentresult,youcanthendividetherank-sums(nottheWorW’)byrespectivesamplesizes,andthesamplewiththesmallerofthosewouldbesignificantlysmaller(orsimilarly,thelargeronewouldbesignificantlylarger)?
SoinExample2/tab“Wilcoxon3”(assumingahighersignificancelevelthatmadethemdifferent),youcoulddividethetherank-sumsof117.5and158.5by12and11,toget9.8and14.4,showingthefirstsampleissmallerthanthesecond.AndinExample3/tab“Wilcoxon4,”youcoulddivide1854and1227by40and38,toget46.4and32.3,showingthesecondsampleissmallerthanthefirst?
Thanksagain!
Reply
Ibelievethatwhatyousaidiscorrect.YoucanprobablygetthesameresultbyusingW,W’andthesamplesizesbutIhavenotlookedintothis.
Charles
Seemyresponsetoyourlatercomment.
Charles
Reply
Charles,
Forexample3,IwouldthinkthatwewillneedtousetheWTESTfunctionwith2-tailedtest.However,thep-valueobtainedusingthe2-tailedfunctionWTEST(R1,R2,2)gavea2timesbiggerp-valuethanthep-valueobtainedusingthenormalapproximation.Why?
Inyourobservationparagraph,youhaveused1-tailedWTESTfunction(ie,WTEST(A6:D15,E6:H15)=0.003081.),whichmatchesthep-valuebasedonthenormalapproximation.
Reply
HelloSun,
Thanksforpointingoutthiserror.Sinceweareconductinga2-tailedtest,thep-value=0.006161(twicethevalueindicated).Ihavenowcorrectedthewebpage.Youhavebeenextremelyhelpfulinidentifyingquiteafewerrors,forwhichIamverygrateful.
Charles
Reply
Charles,
Youareverywelcome.Thereisonemoreareatobecorrectedinthebodyofthetextshownbelow–pleasechange“onetailtest”to“twotailtest”:
“Sincep-value=.006161<.05 reply hisun thanksagain.ihavejustchangedthetextto charles pleasedisregardmyqaboutwtest myapology asiwasnotabletosendtheentireqsofmyoriginalqs hereisthesecondone.itisaboutthep-valueobtainedbasedonwprob. forthewprobformula iusedthesmallest forexample itcamebackwiththevalueof1.999 idoappreciateyourguidanceonhowtocorrectthis. icameacrossafewcontradictoryvaluesinproducingp-valuesusingwtestandwprob. forthefirstexample pleaseadvisemehowicancorrecttheerror. thanks thankyoucharles whatdoyouseewhenyouenter="VER()intoanycell?" itisreturningthereusult sunitha thismeansthatyouhavenotinstalledtherealstatisticssoftware.youneedtogobacktothewebpagefromwhereyoudow nloadedthesoftwareandfollowtheinstallationinstructions. isthereanythingelseineedtodotoinstallitcorrectly ihavenotseenthisproblembeforeanddon whichlanguageareyouusing hicharles iuninstalledthesoftwareandinstalleditagainanditisworkingfinenow. thankyouforallthehelpwiththeinstallation. regards sunitha. thankyouforputtingtogetherthiswonderfulwebsite ihaveaquickquery.forthewilcoxontest thankyouverymuch. gladyoulikethewebsite. thewilcoxonranksumtableinthewebsitegoesupto25x25 sincethewilcoxonranksumcanbecalculatedfromthemann-whitneystatistic thankyousomuchcharlesforaquickreply.canyoupleaseexplainwhatyoumeanby sorrythatigaveyousuchacrypticresponse.itisactuallyquitestraightforward.ifyouhavethecriticalvaluefrom themann-whitneytableyoujustneedtoaddm thankyoucharles.idonotseetherealstatisticsfunctionmcrit.ihavedownloadedandaddedtherealstatisticsinex celaddins.also thisisnotadataanalysistool.youneedtosimplytypetheformula="MCRIT(9,27,.05)inanycell.WilcoxonRankSumonlyworksforindependentsamples.Forpairedsamples,youcanuseWilcoxon’sSignedRanksTest." plswhenyouhavenegativeobservationsinwilcoxonranksumtest somethinglikethis francis therankingisdoneinthesameway hi alsoforarighttailtest hellorichard yes dearcharles thanksforintroducingthisnewtest. inpractice ifyes ismyunderstandingandstepstomakeconclusioncorrect hj youcanstillusethettestevenwhenthepopulationisnotnormallydistributedprovidedthedataisnottoofarfromnor mally youshouldalsomakesurethatthetwosamplesareindependent.ifnottheninsteadofusingthewilcoxonranksumtest providedyouhavetwoindependentsample thankyouforyourexellentwebsite.forashortcomment kylekim thewicoxonranksumtest hicharlesthanksforclearexplanationofthestage.myqoustionishowtointerthosedataonspsssoftwares tariku sorry hello firstofallthanksforthisveryclearexplanation idohavea>20….howcanIfindmycriticalWfora=0.05tocomparetomyWleftandW’right?
Thanksalot
Kindregards
Reply
Lara,
ThelargeesttableIhaveseenonlygoupton1=40andn2=20,butwithsamplessolargeyoucansafelyusethenormalapproximationinsteadofthetablesofcriticalvalues.Thisapproachisdescribedonthereferencedwebpage.
Charles
Reply
hi!CharlesdoyouaboutWILCOXONMANN-WHITNEYTEST?andtogettheU-statistics?
Reply
Jesmae,
Seethefollowingwebpage:
Mann-WhitneyTest
Charles
Reply
HiCharles:
Ihaveaquestionforexample2(unequalsamples).
n1=12;R1=117,5;R1’=170,5
n2=11;R2=158,5;R2’=105,5
Ws=min(158,5;105,5)=105,5
Idon’tknowif158,5ischoosenbecauseisthebiggervalueoflefttailorbecauseifthevalueofthesmallersampleandnomatterifisthebiggervalueornot.
Bestregard
Felix
Reply
Felix,
Thesmallersampleischosen.
Charles
Reply
MayIuseaWilcoxonsinged-ranktestwhenthevairancesarenotsimilarbetweenthetwogroupscompared?
Thanksforyourhelp
Reply
Alberto,
TheWilcoxonSignedRankstestoperatesonthedifferencesbetweenthedataitemsandsothevarianceswon’tmatter.ThesituationisdifferentfortheWilcoxonRankSumtest.
Charles
Reply
hi
Ihaveaquestioninordertomodifydatabyusingwilcoxonrank-sumnon-parametricrank.supposeIhavearatingfor1parameterswhichIhavenitrateconcentratesaswell.Iamgoingtomodifyratingrespecttonitrateconcentration.HowwouldIbeabletomodifyratingbyWilcoxontest?
forexample:
ratenitrateconcentrationmodifiedrate
41.3?
52?
818.5?
Reply
Sorry,butIdon’tknowwhatyoumeanby“modifydatausingwilcoconrank-sumnon-parametricrank”.
Charles
Reply
DearSir,
IamusingWilcoxonranksumtestformyresearchresults.Ihaveresultsoftwoalgorithmsfor30functionsthatmeansn1is30andn2isalso30.Icalculatedpvalueandusedsignificantlevel.05.Now,Iwanttofindwhichvaluesofn1(outof30)issignificantlydifferentfromn2.Iftheanyofthevalueissignificantlydifferentthenwhichoneisbetter.
Thankyouinanticipation.
Reply
Parul,
Sorry,butIdon’tunderstandyourquestion.
Charles
Reply
Hello,IamsearchingforthesignificancelevelsofaWilcoxonranksum(Mann-Whitney)test.Iusedstatatogeneratethepvaluesbutiamwonderingatwhichleveldoisaythefiguresaresignificantate.g0.01,0.050r0.20?Isthereawayicouldselectthelevelofsignificanceinstata?
Reply
Peter,
Thesignificancelevelreallydependsonyou.ItsimplystatesthelevelofTypeIerroryouarewillingtoacceptforthetest.Thetypicalvalueis.05(i.e.onetypeIerrorevery20tests).Youcansetitlowerifyoulike.SeeNullandAlternativeHypothesisfordetails.
Charles
Reply
Kindlyhelpwiththis,itsveryurgent.Whatstudydesigncanbeusedforsigntest,wilcoxonsign-rankedtest,mediantestandmannwhitneytest.Thanksinanticipation.
Reply
Pleaselookatthewebpagesforeachoftheseteststogettheinformationthatyouarelookingfor.
Charles
Reply
DearDr.Charles,
Ihavetwomethods.Eachmethodistestedon8samplesandforeachsamplewehavePrecision,Recall,F-score.ThemethodXhashigheraverageF-scorethanmethodY.However,thedifferenceissmall.Iamaskedtocalculatethep-valueofthedifference.
IstheWilcoxonranksumtestthecorrectway,orIshouldthinkinanotherdirection?
Howtocalculatethep-valueofthedifference?ShouldIlistthearrayF-scoreforXandarrayF-scoreforYinMatlabandusethecommandranksum?
Pleaseadvice.
Thanksalot
Reply
Ahmed,
Ican’ttellfromyourdescriptionwhatPrecision,RecallandF-scorerepresent.ArePrecisionandRecallthetworandomvariables?IsF-scoretheFstatistic?
IamnotfamiliarwithMatlab’sranksumcommandandsocan’tcommentonthat.
Charles
Reply
MyN1isonly16,butN2is5035.HowamIsupposetofindalphathen?
Reply
Bessie,
Youwon’tbeabletousetheWilcoxonRankSumTablewithsuchahighvalueforN2.Insteadyouusethenormalapproximation,whichdoesn’trelyonthetable,asdescribedinExample3ofthereferencedwebpage.
Alsothetabledoesn’tgiveyoualpha.Itgivesyouthecriticalvalues.
Charles
Reply
Thanks!
Iamactuallystillconfusedhere.Myn1setofdataisn’tnormal.andN2sinceithassuchahighnumber,weassumeittobenormal.Myproblemistocomparethemeanofthistwosetofdataseeiftheyaresignificantlydifferentfromeachother.
N2isactuallymypopulation
Reply
Bessie,
TheWilcoxonRankSumTestdoesn’tcomparethetwodatasets,itcomparestheranksofthevaluesinthedataset.Thesewillbeapproximatelynormallydistributed(eveniftheoriginaldataisnotnormallydistributed).Ifonesetisasamplefromthesecondset(i.e.thepopulation),thenyouareviolatingtheindependenceassumptionoftheWilcoxonRankSumTest;infacttheWilcoxonRankSumTestisreallytestingwhetherthetwodatasetscomefromthesamepopulation,whichinthiscasewouldclearlybetruesinceoneofthesetsisthepopulationfromwhichtheotherisderived.
Charles
Reply
Thanksverymuch!
Hello,thankyouforthewebsite.Ithashelpedalotintranslatingalotoftheformulasfortheseteststoexcel.
Iwasjustwonderingaboutthecalculationofthevarianceinexample3.YourformulaforvariancereadsU14*T6/6.Iwasjustwonderingwherethe6camefrom.
Reply
Asyoucanseefromthereferencedwebpagetheformulaforthevarianceisn1*n2*(n1+n2+1)/12.Buttheformulaforthemeanisn1*(n1+n2+1)/2.Usingsimplealgebra,thismeansthatanalternativeformulaforthevarianceismean*n2/6.
Charles
Reply
HelloagainDr.Charles,
IaminabitofapredicamentasIhavesomesurveydatainwhichIhavesampledthesameindividualsbothbeforeandafter,butIdon’thaveanywaytolinktheirbeforeandafterresultstooneanother(asthesurveyitselfwasanonymous).Inaddition,thebeforeandaftergroupshavedifferentnumberofresponses.ThedataisfromLikertitems(notscales)soIassumenonparametrictestswouldbethewaytogo.MyonlyquestioniswoulditbeappropriatetousetheWilcoxonSumranktesteventhoughIcannotassumeindependentsamples?Thelossinpowerwouldgivemoreconservativeresults,butIwaswonderingifanothertestwouldbemoreappropriate.
Reply
IassumethatyouaretryingtoseewhetherthereisasignificantdifferencebetweenBeforeandAfter.IamnotsurehowyouwouldtestsuchdatasincetheWilcoxonRankSumtestrequiresindependentsamples.Ican’tthinkofanothertest,butfranklyIhaven’thadenoughtimetoreallythinktoomuchaboutthesituationthatyouhavedescribed.
Charles
Reply
Charles,
Thisisbrilliant.Thankyouforallyoureffort.
UnfortunatelyIamhavingproblemswithusingyourfunctionswitharrayformulas.Atypicalsamplecodewouldlooklikethis.
{=WTEST(IF($D$28:$D$30=F$21,$C$28:$C$30),IF($D$21:$D$27=F$22,$C$21:$C$27),2)}
Haveyouheardofsimilarproblems?Doyouknowwhatcouldcausetheseproblems?
Thankyouverymuchinadvance.
Regards,
Nicolas
Reply
Nicolas,
Manyofthefunctionswereintendedtoreferencespecificrangesandnotformulasthatoutputarraysthatareequivalenttomatrices.Ihavebegunchangingthesefunctionssothattheyworkinarrayformulasofthetypethatyouhavedescribed.
IhavealreadyrevisedtheWTESTfunction,althoughIbelievetherevisedversionwillbeinthenextreleaseofthesoftware.Itisimportanttorecallthatalthoughtheformulayouhavewrittenoutputsasinglevalue,ithasanembeddedarrayformulaandsoyoumustpressCtrl-Shft-Enterforittowork.
Charles
Reply
(prisshorthandforprobability)
IshouldnotetheChiSquarewassignificantforthistest..
Reply
Itseemsmymessagewasn’tuploadedcorrectly,SASgeneratesthisforthenegativeWvalue:
prlessthanZ=.00001
Reply
Hi,
SupposeIhavetwoverylargesamplesofseveralthousandobservationseach.Onesampleisafewthousandlargerthantheother.Withunevensamples,IwouldusethesmallerWvalue,andrefertothecriticalvalueofthelefttail.IfW-smallersampleislargerthantheW-criticalvalue,Icannotrejectthenullhypothesis.Isthatcorrect?
Nowlet’ssayIamusingSAStoperformthewilcoxontest.Forthiswilcoxontest,SASgeneratesthisforaNEGATIVEWvalue:
prZ=.00001.
WouldthismeanthatIcannotrejectthenullhypothesis?
Reply
IfW(smaller)“”,RANK_AVG(A6,$A$6:$B$17,1),””).
Charles
Reply
supposeIhavetwosampleswithunequalsizes,howcanIcomparethemusingwithWilcoxonranksum?
Reply
Kembo,
Examples2and3onthereferencedwebpagecomparetwosamplesofunequalsize.Isuggestthatyoulookatthese.
Charles
Reply
Firstofall,congratulationswithyoursite.
IhaveaquestionrelatedtotheuseoftheWscoreintheWilcoxonranksumtest.
IfyoudefineWasthesmallestofR1andR2,whydoyouuseatwo-tailedtestandnotjustaonetailed?
Reply
Jean-Pierre,
Ifn1=n2,youwillgetthesametestresultwhetheryouuseR1orR2.IfIremembercorrectlyoneshouldbecomparedwiththeleftcriticalvalueandtheotherwiththerightcriticalvalue.Thesmalleronecorrespondstotheleftcriticalvalue,whichcanbecomparedwiththevaluesinthecriticalvalues.
Thisverysimilartothettestwherenegativetvalueiscomparedwiththeleftcriticalvalueandthepositivetvalueiscomparedwiththerightcriticalvalue.Givensymmetrytodoatwo-sidedtestyoujustpickonesideandcomparewiththet-criticalvaluedeterminedbyhalvingthevalueofalpha.AsimilarthinghappensintheWilcoxonRankSumtest.
Charles
Reply
Charles:
Indeed,wellexplained,butIamstillnotsurewhywecannotrejectthenullhypothesis(asopposetot-test)becauseW=119.5and115=W-crit.Accordingtoyourearilertutorial“HypothesisTesting”,myunderstandingistorejectthenullhypothesissinceW-valueiswithinthecriticalregion.
Reply
Forthisandothernon-parametricteststhecriticalregionisthearealessthanthecriticalvalue.YoucanthinkofW-critasthecriticalvalueonthelefttail.
Charles
Reply
LeaveaCommentCancelreplyCommentName
Email
Website
Δ
RealStatisticsResources
Follow@Real1Statistics
Search
Searchfor:
Non-parametricTests
IntroductiontoNon-parametricTests
SignTest
TrinomialTest
Mood’sMedianTest(fortwosamples)
WilcoxonRankSumTestforIndependentSamples
WilcoxonRankSumExactTest
WilcoxonRankSumTest–Advanced
Mann-WhitneyTestforIndependentSamples
WilcoxonSigned-RanksTest
Fligner-PolicelloTest
McNemar’sTest
One-SampleRunsTest
Two-SampleRunsTest
GoodnessofFitTests
ResamplingProcedures
DataAnalysisToolsforNon-parametricTests
ResamplingDataAnalysisTool
Jackknife
Bootstrapping
McNemar-BowkerTest
GiniCoefficient
Non-parametricToleranceInterval
CharlesZaiontz
CloseHome
FreeDownload
ResourcePack
ExamplesWorkbooks
QATAccess
Donation(Optional)
Basics
Introduction
ExcelEnvironment
RealStatisticsEnvironment
ProbabilityFunctions
DescriptiveStatistics
HypothesisTesting
GeneralPropertiesofDistributions
Distributions
NormalDistribution
SamplingDistributions
BinomialandRelatedDistributions
StudentstDistribution
Chi-squareandFDistributions
OtherKeyDistributions
DistributionFitting
OrderStatistics
TestingforNormalityandSymmetry
ANOVA
One-wayANOVA
FactorialANOVA
ANOVAwithRandomorNestedFactors
DesignofExperiments
ANOVAwithRepeatedMeasures
AnalysisofCovariance(ANCOVA)
Miscellaneous
Correlation
Reliability
Non-parametricTests
TimeSeriesAnalysis
PanelDataModels
SurvivalAnalysis
BayesianStatistics
WinningatWordle
HandlingMissingData
Regression
LinearRegression
MultipleRegression
LogisticRegression
MultinomialRegression
OrdinalRegression
PoissonRegression
Log-linearRegression
Multivariate
DescriptiveMultivariateStatistics
MultivariateNormalDistribution
HotellingT-square
MANOVA
RepeatedMeasuresTests
BoxTest
FactorAnalysis
ClusterAnalysis
DiscriminantAnalysis
CorrespondenceAnalysis
Appendix
FAQs
MathematicalNotation
ExcelCapabilities
MatricesandIterativeProcedures
LinearAlgebraandAdvancedMatrixTopics
OtherMathematicalTopics
StatisticsTables
Bibliography
Author
Citation
Blogs
Tools
RealStatFunctionInfo
DistributionFunctions
Non-ParametricTestFunctions
DescriptiveStatsandReformattingFunctions
RegressionandANOVAFunctions
Correlation/ReliabilityFunctions
MultivariateFunctions
TimeSeriesFunctions
MissingDataFunctions
MathematicalFunctions
DataAnalysisTools
YouTubeVideos
ContactUs
Search
Searchfor: